
AI in research software:
Best practices

Research Data Unit:
Scientific AI group:
Scientific Software Center:

February 2026

Dr. Sebastian Zangerle
Peter Lippmann
Dr. Inga Ulusoy, Dr. Harald Mack

1. Requirements of
“ML-based science”

What this course is not

- An introduction to data science
- An introduction to machine learning
- A course about different ML algorithms
- A course about different ML training approaches and libraries
- …

Scientific Software Center (2026) 3

What this course is

- A best practices guide to creating machine learning based research software
(MLBRS)

- A recommendation on how to manage and prepare your data
- A recommendation on how to train your models
- An introduction to software engineering best practices for MLBRS
- A guideline on how to generate independently reproducible scientific results

using data-based approaches
- A guideline on how to publish your data and your models in an interoperable

and responsible way

Scientific Software Center (2026) 4

What is special about research software
based on data? (“ML-based science”)

Scientific Software Center (2026) 5

ML science

- Scientific research that uses
machine learning models to
extend scientific knowledge

- Answers a scientific question by
using ML

- No restriction on algorithm,
method, library, domain

Contrary to:

- ML methods research:
Research on ML methods and
algorithms with the goal to
improve the field of ML

Scientific Software Center (2026) 6

Quantitative
science

ML methods
research ML science

Sayash Kapoor et al, http://arxiv.org/abs/2308.07832

http://arxiv.org/abs/2308.07832

Research software

“... software that is developed and used in the context of research…”

Scientific Software Center (2026) 7

Shifting requirements
A scientific question is answered using
computation/simulation, but the way the problem is
solved changes as part of the research process.

Passed along researchers
Initially developed for one purpose but then
often organically extended depending on the
researcher’s needs.

Development Practices
Often created by researchers that have no fundamental
training in software engineering and inherit practices
from those around them.

ML-based research software
“... software that is developed and used in the context of research and predicts outcomes based on
initial data…”

Scientific Software Center (2026) 8

Data and software quality
provide limits to quality and
impact of research!

Mathematically complex problem,
but simple data

Mathematically simpler problem,
but large amount of data

Trivial case:
simple problem,
few data points

Massive data and complex
underlying mathematical structure

MLBRS: Data

Scientific Software Center (2026) 9

Data is foundation for..
…model training, decision making
and/or predictions.

Different kinds of data
For example, numerical data, textual
data, images, audio, video.

Legal considerations
Where does the data come from? Is it licensed? Is
it public or private data? In what form is the data
stored and processed?

Ethical considerations
Does the data exploit work of others? Does
it break some sort of confidentiality? Will it
impact in a possible harmful way or can it be
misconstrued to do harm?

Bias
Is there an inherent bias in the data itself,
due to the data collection approach, or other
reasons?Availability and licensing

Will the data be publicly available to the
community? What license does/will the
dataset have?

Metadata
What is relevant metadata and should be
included on the data card?

MLBRS: Software

Scientific Software Center (2026) 10

Purpose
Will the software be more widely used, be
an in-house code, or one-person
software?

Legal considerations
Does the software incorporate third-party
models and/or code?Software engineering best practices

Does the software follow software engineering best
practices (version control, testing, documentation, …)?

Usability and reproducibility
Does the software include documentation on how
models can be trained, and keeps track of training
parameters? Does the software help to generate model
cards and provide models in transferable format?

Legal considerations
What license is the software published under?
What license are models published under?

Accuracy and reliability
Does the software create robust and consistent results,
even though it is based on a non-deterministic process?

Security
Is the software secure against data injection?

Reproducibility

Research software engineering generally targets (i), but with MLBRS we target (ii)

Why should you care?

Your research integrity, scientific best conduct (malpractice), can have long-lasting
detrimental effect on science (impact on others and the field), affects society!

Scientific Software Center (2026) 11

- Provide data to enable others to reproduce findings
- Provide code to enable others to reproduce findings

➔ Computational reproducibility (i)

- Make sure your findings are true findings, and do not arise from problems
with your data/code

➔ Independent reproducibility (ii) // “Responsible AI”

Key aspects

Scientific Software Center (2026) 12

Legal aspects

Ethical
aspects

Robustness of
the model(s)

Reproducibility
of the model’s

predictions

Reproducibility
of the model

training
Documentati
on on data
collection,

data
cleaning,
feature

selection

Documentation on
model training,
hyperparameter
tuning, model

testing
Software
securityModel bias

Data bias

Data leakage

Software
quality

Responsible
AI

Interoperability

2. Research Data
Management

RESEARCH DATA UNIT

1

Research Data Unit at Heidelberg University

Project Planning
•Data Management

Plans
•Courses &

workshops
• Technical &

organizational
information

Data processing
•heiBOX
•heiCLOUD/nextcloud
• SDS@hd
•High Performance

Computing
•RedCap

Data Archiving &
Publication
•heiDATA
•heidICON
•Archive – your data

preserved
•heiARCHIVE

Pictures: © Universität Heidelberg, Kommunikation und Marketing

http://data.uni-heidelberg.de/

http://data.uni-heidelberg.de/
http://data.uni-heidelberg.de/
http://data.uni-heidelberg.de/

WHAT IS RDM ABOUT?

3

What is research data management?

Research data management

"Research data management concerns the organisation of

data, from its entry to the research cycle through to the

dissemination and archiving of valuable results. It aims to

ensure reliable verification of results, and permits new and

innovative research built on existing information."

(Whyte, A., Tedds, J. (2011). ‘Making the Case for

Research Data Management’. DCC Briefing Papers.

Edinburgh: Digital Curation Centre.)

4

https://library.sydney.edu.au/research/data-

management/research-data-management.html

https://www.dcc.ac.uk/guidance/briefing-papers/making-case-rdm
https://www.dcc.ac.uk/guidance/briefing-papers/making-case-rdm
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html
https://library.sydney.edu.au/research/data-management/research-data-management.html

EXTERNAL REQUIREMENTS &

POLICIES

5

Picture: ht tps:/ /www.flickr.com/photos/raummaschine/9214045295/

https://www.flickr.com/photos/raummaschine/9214045295/

Policies & external requirements

Policies & external requirements

Heidelberg University

Rules for safeguarding good academic practice and handling academic misconduct

§ 10 Documentation

(1) Researchers must document all information relevant to the establishment of a research result

with the degree of transparency that is required and appropriate in the respective field. The same

applies to individual results that do not support the research hypothesis. There must be no

selection of results in such cases. Where research software is developed, the source code must

be documented.

(2) The information required to understand the research, in particular research data and

methodological, evaluation and analysis steps, is recorded. Third parties are to be given access

to this information where this is possible.

7

https://www.uni-heidelberg.de/en/university/about-the-university/good-academic-practice

Policies & external requirements

Heidelberg University

Rules for safeguarding good academic practice and handling academic misconduct

§ 11 Public access to research findings

“Researchers decide on their own responsibility whether, how and where to make their research

findings publicly available. If they decide to publish their results, the data and principal materials

upon which the published work is based must be stored in recognised archives and repositories

where this is possible. The provisions of § 14 must be observed.”

8

https://www.uni-heidelberg.de/en/university/about-the-university/good-academic-practice

Policies & external requirements

Heidelberg University

Rules for safeguarding good academic practice and handling academic misconduct

§ 16 Archiving

“(1) Once they have been made publicly available, research data and findings, and particularly

the materials on which they are based, as well as the instruments and, where applicable, the

research software used, must be backed up by adequate means according to the standards of

the respective field and stored for the legally required time period (usually ten years). A

shortening of this storage period must be justified. The storage period begins when the materials

are first made publicly available.

(2) The materials are archived a) in the researchers’ home institution or b) in repositories serving

several locations. In case a) the university will provide the necessary infrastructure for archiving.

The selected publication medium must make reference to the archiving location in an appropriate

manner.”

9

https://www.uni-heidelberg.de/en/university/about-the-university/good-academic-practice

Policies & external requirements

Policies & external requirements

Seven paragraphs

1) PI‘s are responsible for the whole research data lifecycle.
2) Every research project should develop a data management plan.
3) University offers support via the Research Data Unit.
4) University encourages researcher to publish open access if possible.
5) Importance of data privacy.
6) Data published outside of the university‘s webspace should be registered at

the RDU.
7) PI‘s shall keep their right on data use and publication and shall not transfer

it to third parties.
Research Data Policy - Universität Heidelberg (uni-heidelberg.de)

https://www.uni-heidelberg.de/en/node/4935
https://www.uni-heidelberg.de/en/node/4935
https://www.uni-heidelberg.de/en/node/4935
https://www.uni-heidelberg.de/en/node/4935
https://www.uni-heidelberg.de/en/node/4935

DFG Guidelines on the Handling of Research Data

“[…] For this reason, the handling of research data and the objects on which the data is based

have to be carefully planned, documented and described. Wherever possible it is important to

enable subsequent use of the research data and potentially also the objects by other users.

[…]

For this reason, the DFG expects research projects to include a description of how research data

is handled. The description should be based on the checklist for handling research data

[…]

Costs incurred for the project-specific handling of research data should be requested in

connection with the project.[…]”

Funders are pushing RDM & Open Data

https://www.dfg.de/en/research_funding/principles_dfg_funding/research_data/index.html

Funders are pushing RDM & Open Data

Horizon 2020 & Horizon Europe: FAIR Data Management

• Participating projects will be required to develop a Data Management Plan (DMP)

• Participating projects are required to deposit research data, preferably into a research data
repository

• “[…]as far as possible, projects must then take measures to enable for third parties to access,
mine, exploit, reproduce and disseminate (free of charge for any user) this research data.“

• http://www.dfg.de/foerderung/antrag_gutachter_gremien/antragstellende/nachnutzung_forschungsdaten/

• Guidelines on Open Access to Scientific Publications and Research Data in Horizon 2020 | Guidelines on Data Management in Horizon 2020

http://www.dfg.de/foerderung/antrag_gutachter_gremien/antragstellende/nachnutzung_forschungsdaten/
http://www.dfg.de/foerderung/antrag_gutachter_gremien/antragstellende/nachnutzung_forschungsdaten/
file:///C:/Users/jap/bwSyncAndShare/Präsentationen/ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf
file:///C:/Users/jap/bwSyncAndShare/Präsentationen/ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf
file:///C:/Users/jap/bwSyncAndShare/Präsentationen/ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf

Journals: Nature

An inherent principle of publication is that others should be able to

replicate and build upon the authors' published claims. A condition of

publication in a Nature Portfolio journal is that authors are required

to make materials, data, code, and associated protocols

promptly available to readers without undue qualifications.

[…]Providing large datasets in supplementary information is strongly

discouraged and the preferred approach is to make data available in

repositories.

https://www.nature.com/nature-portfolio/editorial-policies/reporting-

standards#availability-of-data

https://www.nature.com/sdata/policies/repositories

14

https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards#availability-of-data
https://www.nature.com/sdata/policies/repositories

Journals: PLOS

Data Availability

PLOS journals require authors to make all data necessary to replicate

their study’s findings publicly available without restriction at the time of

publication. When specific legal or ethical restrictions prohibit public

sharing of a data set, authors must indicate how others may obtain access

to the data.

[…]

Publication is conditional on compliance with this policy. If restrictions on

access to data come to light after publication, we reserve the right to post

a Correction, an Editorial Expression of Concern, contact the authors'

institutions and funders, or, in extreme cases, retract the publication. […]

https://journals.plos.org/plosone/s/data-availability

15

https://journals.plos.org/plosone/s/data-availability
https://journals.plos.org/plosone/s/data-availability
https://journals.plos.org/plosone/s/data-availability

LEGAL ISSUES

16

§

Legal issues

Research data and copyright

• Textual data typically are protected by copyright

• Copy right holder can grant simple or exclusive usage rights

• For publications in subscription journals: typically unlimited and irrevocable transfer of rights

to the publishers

• Research data? Facts like measurements generally do not reach the threshold of originality,

even though the data collection can be very sophisticated.

• Therefore: According to German copyright law, research data are in many cases not

copyrighted.

• But many data are in databases and there is some kind of protection for these (EU directive

96/09/EG, UrhG §§ 87a-e). Virtually all data are useless without documentation. This

documentation might very well be protected by copyright.

17

Legal issues

Creative Commons Licences

• Standard licences that determine the scope of use of a work

• Combination of layperson-friendly formulation and a legally proper license text adapted to the

relevant national law.

• Licence content and metadata are available in machine readable form and can be added to a

document. (→ TDM)

• Modular structure with differing “degrees of freedom”

• There are also alternatives, e.g. the Open Data Commons licenses.

• For Software there are specific software licenses

18

Picture by Marko Txopitea "Txopi" [CC0], via Wikimedia Commons,
https:/ /commons.wikimedia.org/wiki/File%3ACreative_Commons_Semaforoa.svg

Legal issues

19

https://commons.wikimedia.org/wiki/File:Creative_Commons_Semaforoa.svg

3. Research Data Quality

● Data must contain all ranges of the condition that is to be sampled
○ For example: To predict the impact of temperature on reactivity, all temperatures that are of

interest need to be sampled (predictions only interpolate between data points but cannot
extrapolate).

○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2
years, for scientific journals.

Collecting data

Scientific Software Center (2026) 16Dataset: journal ranking dataset https://www.kaggle.com/datasets/xabirhasan/journal-ranking-dataset

https://www.kaggle.com/datasets/xabirhasan/journal-ranking-dataset

Collecting data

● Data must be homogeneous throughout feature space
○ For example: If temperature and pressure are both sampled, all combinations of features must

be recorded for a homogeneous distribution of data points.
○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2

years, for scientific journals.

Scientific Software Center (2026) 17

Collecting data

● Data must be of good quality
○ Whether it is real or synthetic data, the model can only make accurate predictions if the data

itself is accurate.
○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2

years, for scientific journals

Scientific Software Center (2026) 18

Collecting data

● Data volume must be sufficient
○ Only with enough data can a model be trained to make accurate predictions.
○ For example: Complex data - more data points required; simpler data - fewer data points

required

Scientific Software Center (2026) 19

Collecting data

● Depending on the type of learning, data must be labeled and labeled correctly
○ Incorrect labelling interferes with the learning process.

Scientific Software Center (2026) 20

Photo by nishizuka:
https://www.pexels.com/photo/brown-chihuahua-485294/

Photo by Maksim Goncharenok:
https://www.pexels.com/photo/a-chocolate-muffin-on-blue-surfac
e-5994864/

Data preparation

● Make sure data is clean.
○ Correct typos, misidentified data types

Scientific Software Center (2026) 21

Photo by nishizuka:
https://www.pexels.com/photo/brown-chihuahua-485294/

Chihuahuah →Chihuahua

“26-04-24” →2024-04-26

● Make sure data is homogeneous.
○ Visualize the data and use clustering analysis to identify outliers.
○ Use df.describe() and plotly.express to better understand your data

Data preparation

Scientific Software Center (2026) 22

Data preparation

● Remove duplicates.
○ Duplicates introduce bias.
○ Use df.drop_duplicates()

Scientific Software Center (2026) 23

Data preparation

● Feature Engineering: Select influential features, remove unnecessary ones.
○ Unimportant features increase the complexity and reduce robustness.
○ For example: only choose features that are clearly correlated

Scientific Software Center (2026) 24

Data preparation

● Feature Engineering: Normalize features.
○ Features should have similar data ranges for the weights to be in similar ranges, and

improved model robustness and faster training.

Scientific Software Center (2026) 25

Data preparation

● Make sure to randomize your data.
○ Otherwise, your train and test data could contain more/less data of a certain kind

(inhomogeneous data)

Scientific Software Center (2026) 26

train

test

Data preparation

● Feature engineering: Make sure your dataset is balanced.
○ For classification tasks, all classes should have comparable sizes (similar numbers of

examples).

Scientific Software Center (2026) 27

Class A

Class B

Data preparation

● Feature engineering: Pick the right scale.
○ Visualize your data to see if you need to transform ie. onto a log scale.

Scientific Software Center (2026) 28

linear scale log scale

4. Modeling of Research
Data

Deep learning – Tools and Tricks

I wish I had known earlier

Peter Lippmann

05.02.2026

Scientific AI Lab, IWR, Heidelberg University

Deep learning overview

min
θ

E(x,y)∼D L(y , fθ(x))

D: data distribution, typically approximated by a finite set of input-target pairs {xi , yi}
fθ: neural network with learnable parameters θ

L: differentiable loss function, typically minimal if y = fθ(x)

In practice:

min
θ

∑
sample (xi ,yi)
in training set

L(yi , fθ(xi))

Optimization via (mini batch) gradient descent:

θ(t+1) = θ(t) − α
∑

sample (xi ,yi)
in mini batch

∇θL(yi , fθ(xi))

1

The neural network

[1]

• Network types: CNNs for images, GNNs for graphs, sequence models for language,

recurrent NNs for time series data, ... (often clear what to choose)

• BUT many representatives, e.g. many different CNN architectures (less clear)

• For given architecture, several hyperparameters (educated guess + trying out)

2

The loss function

min
θ

∑
sample (xi ,yi)
in training set

L(yi , fθ(xi))

• Heavily depends on your task, e.g.:

- classification ↔ Cross Entropy loss,

- regression ↔ MSE (a.k.a. L2-loss) ∥yi − fθ(xi)∥2

• Tip: for regression L1-loss |yi − fθ(xi)| can be more robust to outliers

• Sometimes a combination of losses is used (weighting them can be tricky)

3

The data

• More data is better, higher quality data is better

• Visualize your data before: PCA, UMAP, t-SNE

• Check your data is balanced (e.g. in instances per class)

• Split your data into train, validation and test set

• Standardize your data (both input and output)

• Use data augmentation if possible

[2]

Data augmentation

4

The optimizer

Use AdamW (Adaptive Moment Estimation + weight decay):

• Adaptive learning rate helps against too small or too large gradients

• Momentum stabalizes the gradient descent

• Weight decay helps against overfitting

[3]

(a) Effect of momentum

[4]

(b) Overfitting model

5

More tricks against overfitting

• Dropout: randomly drop/ignore neurons during training

• Save checkpoints of your model: last (if training crashes) & k-many best
6

More Training Tricks

• Try to overfit on a single sample to debug your pipeline

• Set a seed during training for reproducibility

• Use enough CPU workers in dataloader to properly use GPU

• In dataloader use shuffle=True and drop last=True

• Try gradient clipping in the optimizer against instable training

• Use a learning rate scheduler (e.g. cosine schedule)

• Try learning rate warmup

• Definitely try normalization layers: helps to standardize activations

7

Model evaluation

• During training, evaluate your model on validation set

• After training (when ready to publish), evaluate your model ONCE on the TEST set

• Use suitable metric to benchmark your model (e.g. accuracy for classification, see

https://metrics-reloaded.dkfz.de/ for image analysis)

8

https://metrics-reloaded.dkfz.de/

Logging via Tensorboard

9

Pytorch Lightning

Pytorch lightning module combines pytorch model + optimizer + logging

• Abstracts away to("cuda"), loss.backward(), model.eval() and much more

• Makes complicated things which many people use easy, e.g. multi GPU support

Many great tutorials at

https://lightning.ai/docs/pytorch/stable/starter/introduction.html 10

https://lightning.ai/docs/pytorch/stable/starter/introduction.html

Config management with Hydra

• Save on boilerplate by “programming” in configs (customize models in config not in code)

• Easy to add new models, datasets, tasks and experiments

• Uses OmegaConf for configuration management

Great Hydra + Lightning template at

https://github.com/ashleve/lightning-hydra-template
11

https://github.com/ashleve/lightning-hydra-template

How I use LLMs in my workflow

• Github co-pilot auto-completion in VS code

• Agent mode or LLMs for debugging: just paste the error traceback

• LLMs for speeding up code: from for-loops to vectorized code

Caveat: Bugs introduced by LLMs are hard to spot! ALWAYS check LLM code line by line!
12

Thank You!

Any Questions?

13

Image References

[1] https://www.marktechpost.com/wp-content/uploads/2022/09/Screen-Shot-2022-09-23-at-10.46.

58-PM.png

[2] https://media.datacamp.com/legacy/image/upload/v1669203370/Data_Augmentation_Header_

f42227f2cb.png

[3] https://i.sstatic.net/epW89.jpg

[4] https:

//static.wixstatic.com/media/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg/v1/fill/w_

1000,h_449,al_c,q_90,usm_0.66_1.00_0.01/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg

14

https://www.marktechpost.com/wp-content/uploads/2022/09/Screen-Shot-2022-09-23-at-10.46.58-PM.png
https://www.marktechpost.com/wp-content/uploads/2022/09/Screen-Shot-2022-09-23-at-10.46.58-PM.png
https://media.datacamp.com/legacy/image/upload/v1669203370/Data_Augmentation_Header_f42227f2cb.png
https://media.datacamp.com/legacy/image/upload/v1669203370/Data_Augmentation_Header_f42227f2cb.png
https://i.sstatic.net/epW89.jpg
https://static.wixstatic.com/ media/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg/v1/fill/w_1000,h_449,al_c,q_90,usm_0.66_1.00_0.01/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg
https://static.wixstatic.com/ media/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg/v1/fill/w_1000,h_449,al_c,q_90,usm_0.66_1.00_0.01/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg
https://static.wixstatic.com/ media/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg/v1/fill/w_1000,h_449,al_c,q_90,usm_0.66_1.00_0.01/0ed3e8_a9b7d6d3dc6b4d5cbcb30c8b2fd4782b~mv2.jpg

 5. Reproducibility in MLbRS
in practice

Machine-learning based research software

Scientific Software Center (2026) 32

Software

Modelling/
Experiments

Data

MLbRS

Established principles for sustainable software

- Single responsibility principle: One task per code entity

- Open-closed principle: Open to extension, closed to change

- Liskov substitution: Allow substitution with derived version

- Interface segregation: Only depend on things you need

- Dependency inversion: Depend on abstractions, not concretes

Scientific Software Center (2026) 33
Apply to all aspects of MLbRS!

Separation of concerns/ Single responsibility

Scientific Software Center (2026) 34

In software engineering

● Responsibility = 'reason to
change'

● Any code entity should just have
one reason to change

● Any entity implements only things
concerned with a single problem

In MLbRS

● Every part has one 'reason to change'
● data, code and parameterization

handled by different entities
● Raw, preprocessed, final data are

distinct and don't mix
● every step in the pipeline does one

thing only
● library code and experiments in

separate repositories

Mental model : "functional purity" - no side effects, same input => same output

Open/closed principle

Scientific Software Center (2026) 35

In software engineering

● new features can be added without
modifying existing code

● existing code is stable even if new
functionality is added

● established features have baseline
correctness => tests

In MLbRS

● make use of modularity in your
models, pipeline

● add new experiment runs
without impacting previous ones

● Bind data + model def. to
experiment

Practical tool : Use frameworks, version control (data + code)

Liskov substitution principle

Scientific Software Center (2026) 36

In software engineering

● system should be able to run with
derived classes without knowing it

● 'Design by contract'
● introduces guarantees: everything

that adheres to a certain behavioral
spec works

In MLbRS

● each stage in the pipeline
corresponds to an abstract contract

● different versions of a stage =>
different implementations of its
contract

● use a different model, different data
transforms etc without touching our
setup

● Guarantees allow faster iteration

Tool : Polymorphism, config templates, repo templates

Interface segregation

Scientific Software Center (2026) 37

In software engineering

● don't force entities to depend on
unused interfaces

● split large interfaces into smaller
modular parts

● protects from undesired side
effects

● sparsifies dependency graph

In MLbRS

● no unnecessary
interdependencies between
pipeline steps

● make pipeline minimal and
specific: only pass data, model
modules, evaluators needed

● can help performance too!

Practical tip : use workflow/experiment managers

Dependency inversion

Scientific Software Center (2026) 38

In software engineering

● Functionality should depend on
abstractions, not implementations

● introduces loose coupling
● relationships are ‘reversed’ :

abstraction -> implementations

in MLbRS

● build pipeline on interacting
abstractions

● then use those to derive
implementations

● allows for easy scaling and
testing

Tool : Encapsulation and abstraction

Summary

Scientific Software Center (2026) 39

- SOLID principles from software engineering
- useful for all aspects of MLbRS
- introduce guarantees and invariants => reduce degrees of freedom in system

Compromises are sometimes necessary:

- Performance: GPU likes doing a lot at once -> violate separation of concerns
- Not all projects need everything: scale, goal, persistence
- Problem space evolves with experiments, often no static 'target' => not

everything everywhere all at once
- 'By the spirit, not by the letter'

Practical example I

- have a library git repository + git experiment repository

- library: code, tests, pip releases, CI/CD (later)

- structure of experiment repo:
- src: driver code

- configs: parameterization

- one config per run/sub-experiment

- data: 'hot data'. This can be elsewhere too (directory, drive, network, cloud storage)

- results: produced artifacts: config files, model snapshots, evaluation metrics

Scientific Software Center (2026) 40

Practical tip : Use templates/cookiecutter for repository setup
Library: https://github.com/ssciwr/cookiecutter-python-package

Experiments: https://github.com/drivendataorg/cookiecutter-data-science

Practical example I

Done:

- Ensured reproducibility by saving parameterization together with results
- Code + dependencies under version control
- Parameterization and code separated
- stable library code separate from changing experiment code

Not done:

- Separation of concerns:
- training logic, output setup, config handling all in one script

- Interface segregation:
- Everything depends on full config
- No easy substitution of data processing without changing main script…

- Manual versioning of experiments
- guarantees about behavior only in software part!

Scientific Software Center (2026) 42

Practical example II

- MLbRS = Data + Code + Model => Version control for experiments/data?
- Automatic versioning of processed data, experiments, pipeline stages?
- using 'git for data' isn't ideal because

- Git cannot diff binary files
- gitlfs is often limited (github)
- many big files make repositories big
- separation of concerns: data should not be the concern of the source code VC

- possible solution: DVC (data version control)
- https://dvc.org
- adds a git-like metadata layer to get 'git for data and artifacts'
- tracks the metadata with git
- Handles data in content-addressable storage

Scientific Software Center (2026) 43

https://dvc.org

Practical example II - DVC in more detail

DVC gives you:
- git-like interface for data, experiments
- Similar API to git: commit, branch, checkout…
- reproducible pipelines
- 'Smart run': only pipeline stages that change run again

DVC is not
- inference engine
- hyperparameter optimization system (use Optuna, W&B,

Raytune…)
- not a full fledged experiment dashboard

Scientific Software Center (2026) 45

Use cases

● Versioning of data
and models

● Experiment pipeline
setup

● Experiment tracking
and sharing

git tracks recipes, dvc tracks results (processed data, model snapshots, experiment metrics)

Practical example II:
Setup dvc repository and add data

- Initialize dvc repository inside experiment git repository:
dvc init

=> .git, .dvc

- Add data to data/raw directory
dvc get https://huggingface.co/datasets/ylecun/mnist ./mnist -o
./data/raw/ylecun/mnist

=> raw data, not tracked by dvc

dvc add ./data/raw/ylecun/mnist

dvc commit

Scientific Software Center (2026) 47

Practical example II: Define pipeline

- Stage 1 - Data preprocessing
- Apply a set of transforms to raw data
- Save transformed data to disk
- Input: dataset name, dataset subset size
- Output: transformed data

- Stage 2 - model training
- Read preprocessed training data
- Train model

- Stage 3 - model evaluation
- Load trained model
- Run on test data
- Record metrics

Scientific Software Center (2026) 48

dvc stage add -n prepare_data \

-p data.name,data.train_size,data.test_size \

-d src/prepare_data.py -d data/raw/${data.name} \

-o data/processed/${data.name} \

python3 ./src/prepare_data.py --dataset ${data.name} --train_size

 ${data.train_size} --test_size ${data.test_size}

Practical example II: Run pipeline

Scientific Software Center (2026) 49

● Visualize defined pipeline with various backends

dvc dag

● Reproduce current pipeline

dvc repro

- Use defined parameters to run the pipeline again
- Relies on data being available!
- Will skip stages for which the input/parameters has not changed

Practical example II: Manage experiments

Scientific Software Center (2026) 50

Run pipeline with a modified set of parameters

dvc exp run --set-param configs/training.yaml:learning_rate=0.003

--set-param data.train_size=12000

- Modify parameter in params.yaml or referenced sub-configs
- Caches all current experiments
- Allows us to select some and commit it for further use, or branch on them
- DVC will keep track of experiments automatically: dvc.lock
- Commit dvc.lock asap!

Practical example II: Track and visualize results

Scientific Software Center (2026) 51

- A pipeline stage can output 'metrics' to quantify experiment result
- dvc exp show

Practical example II: Manage experiments

Scientific Software Center (2026) 52

● Select experiment to apply and continue with

dvc exp apply *experiment_name*

- Apply parameters to the config file
- You must create new git commit with the changes!

● Promote experiment to git branch to iterate further

dvc exp branch *experiment_name*

● What you want to keep must go into version control!
● Commit changes often!

Practical example II: DVC Remotes

Scientific Software Center (2026) 53

● Like git, dvc supports remotes to store tracked artifacts
● Remotes can be

○ Http address with login
○ SSH server
○ S3-based cloud storage
○ …
○ local

dvc remote add -d default_local ../path/to/local/remote

dvc commit, dvc push, dvc pull, dvc update…

● Add data to cache
● Push the data cache to remote
● Update data cache from remote
● Share repository and data remote with coworkers to share experiment status

Practical example II - summary

DVC approach is more SOLID

- Pipeline definition separate from code (Separation of concerns)
- Pipeline definition separate from pipeline parameterization
- Stage defined by command + parameters, not code (Liskov subst., Dependency inversion)
- Arbitrarily composable, stage interdependence minimal (Interface segregation)
- Extension is easy, even if current stages' code is unknown (Open/closed principle)
- Experiment management doesn't have to be hardcoded or manually managed
- Much more to it:

- DVCLive Python module, e.g., for usage with jupyter notebooks
- DVC extension for vscode
- Support for hydra.cc: https://doc.dvc.org/user-guide/experiment-management/hydra-composition

Scientific Software Center (2026) 54

http://hydra.cc

6. Software Engineering
best practices

Version Control: git

What is this?

A tool to allow you to track and revert changes, and collaborate with others
(change management).

Why is this important?

- Allow versioning of the code and continuing functionality.
- Allow simultaneous changes to the same files.
- Fundamental for reproducing historic states in the line of development.
- Development follows a story and allows other users to build confidence in

your work.

Scientific Software Center (2026) 57

Version Control in practice: git

- Create a repo on GitHub
- Clone the repo to your local machine
- Checkout a branch and make changes
- git add, git commit and git push: IDEs such as VSCode make it easy for

you!
- Observe how your repo changes on GitHub
- GitHub offers great learning labs: GitHub skills https://skills.github.com/
- roadmap.sh offers a git roadmap: https://roadmap.sh/git-github

Scientific Software Center (2026) 58

https://skills.github.com/
https://roadmap.sh/git-github

Development workflows: GitHub-flow

What is this?

GitHub-flow is a lightweight workflow with creating branches, making changes,
opening Pull Requests, running Continuous Integration, and requesting code
review, together with Issues and Kanban project boards.

Why is this important?

- Manage how changes are incorporated in the software.
- Track progress in your project and highlight bottlenecks.
- Adhere to development guidelines, ensuring the implementation follows

defined rules to ensure software quality.

Scientific Software Center (2026) 59

Development workflows in practice: GitHub-flow

- After you made changes in your git branch, open a Pull Request on GitHub
- Observe how the PR highlights the changes in the line of development
- You can link issues, comment on the PR and run automated checks
- See GitHub skills https://skills.github.com/
- See roadmap.sh https://roadmap.sh/git-github

Scientific Software Center (2026) 60

https://skills.github.com/
https://roadmap.sh/git-github

Requirements engineering and continuous delivery

What is this?

Requirements engineering is the process of translating stakeholder requirements on the
research software into defined tasks. Early delivery and iteration over it allows refinement of
the requirements and tasks.

Why is this important?

- Ensure that the software fulfills its purpose. In research software, requirements
engineering is closely intertwined with the research process and subject to frequent
changes.

- Understand the problem the software should solve and map this onto an efficient
technically feasible solution considering all constraints.

- Allows prioritization of requirements/tasks and decision-making. Decisions should be
documented together with the requirements. Scientific Software Center (2026) 61

Requirements engineering in practice

- Functional requirements (what the software should do: features)
- Non-functional requirements (how the software performs a task: ie

performance, security)
- Domain requirements (specific to the domain: ie. Healthcare)
- Use tools such as draft.io or miro to gather requirements

Scientific Software Center (2026) 62

As a <type of user>, I want
<some goal> so that <some

reason>.

As a <researcher>, I want
<to obtain the
probability of a class>
so that <I can classify
incoming images>.

Continuous delivery in practice

- Deliver early to find out if your software is fulfilling its purpose/moving in the
right direction

- Use quality control to allow early delivery through the main branch in your
GitHub-flow (keep your main branch operational at all times)

- Following agile / lean principles
- Use git to allow consistent usability of your software

Scientific Software Center (2026) 63

Planning

Analysis

Design
Implementation,

Testing

Delivery /
Maintenance

Software
Development

Life Cycle

Project management: Kanban boards

What is this?

Project management is used to track progress, identify intertwined or dependent
processes, and allows visual access to the project’s status.

Why is this important?

- Ensure that the software development moves in the right direction.
- Increase the flow of ongoing work.
- Allow prioritization of tasks and understand interdependencies and

bottlenecks in the development.

Scientific Software Center (2026) 64

Project management in practice

- Use a Kanban board to organize tasks
- Separate tasks into backlog/todo, in progress, done
- Prioritize tasks and assign contributors/identify necessities
- For example, GitHub projects

Scientific Software Center (2026) 65

Project planning: Architecture and design

What is this?

Software architecture describes how the system is composed of different pieces,
and the interplay of the components. Design refers to the actual implementation of
the requirements in the system as a whole and the different components.

Why is this important?

- Makes the software efficient and allow re-use of functionalities.
- Allows extensions and additions of features at a later stage without major

refactoring.
- Makes the software maintainable.

Scientific Software Center (2026) 66

Architecture in practice

- Use (black/white) box diagrams to identify components and their interactions
- https://roadmap.sh/software-design-architecture / miro / draft.io / draw.io

Scientific Software Center (2026) 67

server
client

service database

service

https://roadmap.sh/software-design-architecture

Design in practice

- Map the input/output, data formats, transformations / logic / processes
- https://roadmap.sh/software-design-architecture / miro / draft.io / draw.io

Scientific Software Center (2026) 68

https://roadmap.sh/software-design-architecture

Quality management: Testing and continuous integration

What is this?

Quality management ensures that the software is producing correct results and
that the results are reproducible.

Why is this important?

- As a scientist, you should take utmost care to conduct your science in
accordance with the scientific code of conduct.

- Yourself or other researchers may need to reproduce results for further
studies.

- Ensure that nothing breaks when you implement changes/new features.

Scientific Software Center (2026) 69

Testing in practice

- Use testing frameworks such as pytest
- Write tests in a tests/ folder: unit tests, integration tests, system tests,

compatibility tests, …
- To learn how to use pytest: https://docs.pytest.org/en/stable/,

https://realpython.com/pytest-python-testing/

Scientific Software Center (2026) 70

https://docs.pytest.org/en/stable/
https://realpython.com/pytest-python-testing/

Testing of non-deterministic processes

Scientific Software Center (2026) 71

Try to make processes deterministic
For example: Use specified random seed.

Separate deterministic and non-deterministic processes and
test separately
For example: Input processing can be tested separately from model prediction.

Test for output parameters and properties that remain constant
For example: Number of predictions, feature length, etc.

Include multiple valid outputs in your
tests
For example: Three most probable
classifications.

Robustness: A robust model is more likely to behave like
a deterministic system
Make sure your model output is stable under a range of conditions.

Accuracy: The model accuracy will
affect the testing strategy
A higher accuracy leads to more consistent
predictions.

Distribution: You can also test for the distribution of results
rather than the results themselves

Continuous integration in practice

- Set up your tests to be automatically run by GitHub actions
- Include code linter and quality control in your actions
- These should be set up to run automatically when you open a Pull Request
- GH actions, codecov, sonarcloud, snyk, pre-commit, code formatting

(black), GitHub Guardian, dependabot

Scientific Software Center (2026) 72

Software Management Plans

What is this?

Software Management Plans (SMPs) help to identify goals and the means
required to pursue the goals in practice.

Why is this important?

- Identify criticality and required maturity of your software.
- Identify which measures are needed to ensure compliance of your software

with the intended goals.
- Quantify milestones and tools for the intended purpose.

Scientific Software Center (2026) 73

SMPs in practice

- Use the SMPs provided by the Max
Planck digital library

- Helps you with your requirements and
project management

- https://rdmo.mpdl.mpg.de/

Scientific Software Center (2026) 74

https://rdmo.mpdl.mpg.de/

Documentation

What is this?

Documentation can be comments, docstrings, readme’s, tutorials, demonstration
notebooks, and contains technical and domain-specific / application-specific
descriptions of the software.

Why is this important?

- Document what the software can and cannot do, and parameter ranges.
- Allow others to install and use your software (or yourself, at a later time).
- Allow others to contribute to your software.

Scientific Software Center (2026) 75

Documentation in practice

- Use tools like sphinx and
mkdocs to render docstrings
and markdown at minimal
effort

- Include jupyter notebooks that
showcase use of your
software - these can be run
on google colab

- Document dependencies in a
requirements file and provide
installation instructions

Scientific Software Center (2026) 76

Deployment: Runtime environment / containerisation

What is this?

Deployment information such as runtime environments or containers allow easy
adaption as they provide direct access to running the software without installation
and dependency conflicts.

Why is this important?

- A big step towards reproducibility and transferability of your approach.
- The software ecosystem changes quickly, and this allows to preserve a

snapshot that can be shared and run easily.

Scientific Software Center (2026) 77

Containerisation in practice

- Use docker to provide build instructions for containers, and possibly deploy
the containers on Dockerhub for anyone to download and use

- Docker roadmap https://roadmap.sh/docker, official tutorial
https://docs.docker.com/

Scientific Software Center (2026) 78

https://roadmap.sh/docker
https://docs.docker.com/

Software Licensing

What is this?

A software license states the terms of use, re-use and distribution, among others,
without violating copyrights, and defines responsibilities.

Why is this important?

- So that others may use your code, and to prevent misuse.
- So that others may contribute to your code.
- So that the responsibilities for how the software is used are clear.
- Establishes the rights of all parties involved with the software.

Scientific Software Center (2026) 79

Software licensing in practice

- Use the provided templates from GitHub: Either at repository creation or when
adding a new file called LICENSE

- Permissive open-source license: BSD 2-Clause, MIT, Apache License 2.0
- Copyleft open-source license: GNU version 3, LGPL
- Proprietary licenses: Do not only keep your project close-source and

potentially less visible, but also carry responsibilities for contract fulfillment
- https://opensource.org/licenses, https://choosealicense.com/
- When using/incorporating third-party software: ie. use of open-source

libraries - is the third-party code distributed with your software? If so,
compatibility needs to be confirmed!

Scientific Software Center (2026) 80

https://opensource.org/licenses
https://choosealicense.com/

Tooling and generative AI

Dr. Inga Ulusoy, Scientific Software Center (2026) 81

Tooling: Integrated Development Environment (IDE)

What is this?

An IDE is a software application that combines tools for software development,
such as a code editor, linter, compiler, debugger, and automation utilities.

Why is this important?

- Provides you with all required tools in one place, making software
development more efficient.

- Helps you keep your code clean.
- Many different IDE’s available:

https://github.com/zeelsheladiya/Awesome-IDEs

Scientific Software Center (2026) 82

https://github.com/zeelsheladiya/Awesome-IDEs

IDEs in practice

- For example: VSCode https://code.visualstudio.com/
-

Scientific Software Center (2026) 83

https://code.visualstudio.com/

AI-supported software development

What is this?

The software development process can be supported by AI in many ways:
- Code completion
- Code generation
- Code analysis
- Code quality
- Documentation
- Debugging
- Security enhancement
- Architecture/UX design
- Full-cycle development (AI agents)

Why is this important?

- AI has become an integral part of software development and can help you write better code.
- You can improve your skills by interacting with AI systems as you learn to understand why you

should write something like this, or also why not.

Scientific Software Center (2026) 84

AI-supported software development in practice

- For example: GitHub Copilot https://github.com/features/copilot - get free
access as a student https://github.com/education - many other tools available
as well, for example

- Code analysis: ie. SonarQube Cloud integration to GitHub, snyk
- Security enhancement: ie. snyk
- UX design: ie. Figma
- A list of tools: https://github.com/jamesmurdza/awesome-ai-devtools,

https://github.com/ikaijua/Awesome-AITools
- Copilot is integrated into VSCode: Code completion, code generation, code

summarization, generation of docstrings and documentation content
- Chat mode or agentic mode
- Also allows to chats on GitHub and can carry out Pull Requests by itself

through agentic mode

Scientific Software Center (2026) 85

https://github.com/features/copilot
https://github.com/education
https://github.com/jamesmurdza/awesome-ai-devtools
https://github.com/ikaijua/Awesome-AITools

GitHub Copilot: Models (as of Sept. 2025)

Scientific Software Center (2026) 86

select model

AI-supported software development: User roles

Scientific Software Center (2026) 87

Chat user, ie.
ChatGPT

Copilot user, ie. code
completion and code

generation

Chat-and-Copilot
user, ie. code

completion and code
generation iterates

with chat

Agentic user up to
vibe coder

- Get help and learn
through
explanations and
summarization

- Increase efficiency
through passing
over cumbersome
tasks such as
boilerplate code,
docstring
generation or
straightforward
pieces of code

- Increase efficiency
and learn through
interacting more
closely with the
LLM, refactoring
suggestions in an
iterative manner

- Pass of
responsibility for
pieces of code, or
complete parts of
the code to the AI
agent without
following the AI
implementation in
detail

AI-supported software development: caveats

- Not understanding your code
- Creating code that is harder to maintain
- Mixing of code for different releases of the same library (ie. langchain 0.2.x,

0.3.x, especially in frontend development)
- Rewriting code that is actually provided by a library through a simple keyword
- Subtle hallucinations that introduce hard-to-spot mistakes
- AI only as good as the context
- Does not generate code in the same style as existing codebase (lack of

context-awareness and preservation)
- And of course, copyright, legal and ethical considerations

Scientific Software Center (2026) 88

Starting a new project

Dr. Inga Ulusoy, Scientific Software Center (2026) 89

Project templates

What is this?

Project templates exist for example on GitHub. They include configurations for
specific types of projects.

Why is this important?

- Project templates help you save time by providing complete configurations for
testing, CI, and documentation, for example.

- Templates help you adhere to common practices, configurations, or
standards.

Scientific Software Center (2026) 90

Project templates in practice

- For example: GitHub template repositories
- Simply click on “use this template”

- More configurable templates: cookiecutters (also available for data science)
- The SSC offers such template repositories for

- C++
- Python
- Fortran
- Matlab

- Consult our guidelines https://ssciwr.github.io/guidelines/

Scientific Software Center (2026) 91

https://ssciwr.github.io/guidelines/

Summary: Software Engineering best practices

Best practices: Building blocks for your software project

Scientific Software Center (2026) 92
Version Control GitHub-flow

Requirements Continuous
Delivery

Project
Management

Architecture and
Design

Software testing Continuous
Integration

Documentation Runtime environment/
Containerization

Software licensing Software (and
data) publication

7. Publishing,
interoperability and
responsible AI (RAI)

Dr. Inga Ulusoy, Scientific Software Center (2025) 93

Software publication

What is this?

A software publication associates a DOI or other persistent identifier with your
software.

Why is this important?

- This makes your software citable in scientific publications.
- You can reference your software plus providing the version number that you

used.
- Your contribution to the scientific community becomes more visible.
- The publication helps you to structure the code and documentation for a

user’s perspective.

Scientific Software Center (2026) 94

Software publication in practice

- A list of software-specific journals:
https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software

- Write a short paper detailing your software, the architecture and design, in-
and output, and purpose of the software

- Another option is to place a snapshot of your repo on zenodo, this also allows
you to obtain a DOI

- Another option is to upload your project to Software Heritage and obtain a
persistent SWHID https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Scientific Software Center (2026) 95

Software Heritage

https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html

Data publication

What is this?

Data can be published in dedicated data repositories and obtain a DOI.

Why is this important?

- You can publish your datasets, making them available to the community.
- By associating a DOI, you may garner citations.
- Data often is the foundation for reproducing results.
- Data should be stored and preserved separately from the software once it

reached a stage that it does not change anymore.

Scientific Software Center (2026) 96

Data publication in practice

- Option A: Publish your data on zenodo and obtain a DOI
- Option B: Publish your data in your institutionally provided data repository, ie

heiDATA and obtain a DOI
- Option C: Publish your data on community platforms such Hugging Face if

these provide a DOI
- Make sure your data is clean and does not need to be updated anymore
- Cite your own data repository in your publications
- You can also download your own data dynamically within your code, ie,. using

pooch https://www.fatiando.org/pooch/dev/ or datasets https://huggingface.co/docs/datasets/en/index

Scientific Software Center (2026) 97

https://www.fatiando.org/pooch/dev/
https://huggingface.co/docs/datasets/en/index

Why share your data?

- Create a larger impact of your scientific work
- Increase transparency and trust in your work
- Enable others to reproduce and build upon your findings
- Contribute to science as a whole
- BUT: Be careful with legal (copyright) and ethical issues! First clarify with your

advisor/institution.
- Follow the FAIR principle: Findable, Accessible, Interoperable, Reusable

Scientific Software Center (2026) 98

Image credit: SangyaPundir shared under CC-BY-SA 4.0
The FAIR Guiding Principles for scientific data management and stewardship
https://doi.org/10.1038/sdata.2016.18

Where to share your data

- HeiDATA
- Open Science Framework
- Zenodo
- Figshare
- Dryad
- Hugging face
- Kaggle: no DOI!
- Domain-specific repositories

- i.e. https://lindat.mff.cuni.cz/repository/xmlui/
- see https://www.nature.com/sdata/policies/repositories for a list

- For a comparison, see DOI: 10.5281/zenodo.3946720

Scientific Software Center (2026) 99

https://lindat.mff.cuni.cz/repository/xmlui/
https://www.nature.com/sdata/policies/repositories
https://zenodo.org/badge/DOI/10.5281/zenodo.3946720.svg

Model sharing platforms

You can make models available for others on model sharing platforms like

- Hugging face,
- OpenML,
- Kaggle.

Advantages: Public platform with version control and model cards, you can link
the data into the repo, allows others to use your model for production or
fine-tuning.

Scientific Software Center (2026) 100

Model card

- Model details
- Architecture, parameters, citation information, license information

- Intended use
- Use cases within the model’s scope

- Performance metrics
- Intended performance on given data

- Training data
- Description of training data and data distribution

- Quantitative analysis
- Potential biases and limitations

- Ethical consideration
- Privacy and fairness concerns, impact on society

- https://huggingface.co/spaces/huggingface/Model_Cards_Writing_Tool
- https://github.com/openai/gpt-3/blob/master/model-card.md

Scientific Software Center (2026) 101

https://huggingface.co/spaces/huggingface/Model_Cards_Writing_Tool
https://github.com/openai/gpt-3/blob/master/model-card.md

Model deployment

In addition to making models and software available for others to use in their own
code, you can also directly deploy the model - together with your code - directly so
that it can be used.

Examples:

- Diffusers: google colab
https://colab.research.google.com/github/huggingface/notebooks/blob/main/di
ffusers/stable_diffusion.ipynb

- https://lightning.ai/ for paid service and deployable models
- See

https://www.freecodecamp.org/news/deploy-your-machine-learning-models-fo
r-free/ for tutorials and services

Scientific Software Center (2026) 102

https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb
https://lightning.ai/
https://www.freecodecamp.org/news/deploy-your-machine-learning-models-for-free/
https://www.freecodecamp.org/news/deploy-your-machine-learning-models-for-free/

REFORMS checklist

To ensure reproducibility, include a checklist such as the REFORMS checklist into
the publication of your results.

There are a couple of domain-specific checklists, especially in health and life
sciences (STARD, CLAIM, see the EQUATOR* network), that may be more
appropriate - REFORMS aims to be most general.

Scientific Software Center (2026) 103

REFORMS checklist: DOI 10.48550/arXiv.2308.07832, https://reforms.cs.princeton.edu/
*EQUATOR Network, https://www.equator-network.org/reporting-guidelines/

https://reforms.cs.princeton.edu/
https://www.equator-network.org/reporting-guidelines/

Interoperability and RAI

Scientific Software Center (2026) 104

Interoperability
- Ability to interact with other systems

interchangeably (i.e. transformers, pytorch)
- Exchange information with other systems
- Integrate into other systems

Use data and models in different contexts

RAI
- Develop, assess, deploy AI systems safe and

ethically
- Prioritize equitable and beneficial outcome of

the AI system in the system development
- people and their goals at the center of design

fairness, reliability, transparency, safety,
privacy, security, inclusiveness,

accountability

MLCommons

- To accelerate artificial intelligence innovation and increase its positive impact on society
- Targets industry and academia
- Democratize machine learning through open industry-standard benchmarks that measure quality

and performance and build open, large-scale, and diverse datasets to improve AI models

Scientific Software Center (2026) 105

Croissant: an interoperable data format

Croissant 🥐 is a high-level format for machine learning datasets

Metadata: standardized description of the dataset, including
responsible ML aspects

Resources: one or more files or other sources containing the raw
data

Structure: how the raw data is combined and arranged into data
structures for use

ML semantics: how the data is most often used in an ML context

Find, inspect, and use the data in your favorite ML framework!

Scientific Software Center (2026) 106
https://github.com/mlcommons/croissant
https://doi.org/10.52202/079017-2610

https://github.com/mlcommons/croissant
https://doi.org/10.52202/079017-2610

Croissant file

Scientific Software Center (2026) 107

an ontology for a
schema

Croissant file

Scientific Software Center (2026) 108

Work with croissant datasets

Loading:

Using as a base for training:

Scientific Software Center (2026) 109

- use tfds builder for loading
- builder compatible with tensorflow,

pytorch, JAX
- eclair MCP server to use croissant with

an AI agent
- Very active and open group of

contributors

Scientific Software Center (2026) 110

RAI

Croissant RAI specification https://docs.mlcommons.org/croissant/docs/croissant-rai-spec.html

Scientific Software Center (2026) 111

https://docs.mlcommons.org/croissant/docs/croissant-rai-spec.html

Software security

- Threat modelling: who, what, how
- Data-oriented attack: Access training data, poison data, inject trojan data
- Model-oriented attack: Modify training process (pre-trained malicious models),

manipulate the deployed model (model patches, privacy information leakage,
model inversion attacks)

- System-oriented attack: specialised hardware accelerators for ML software
(SOC, trojan in GPU/TPU, for model corruption, backdoor insertion, model
extraction, spoofing, information extraction, sybil attack)

- Possibility to carry out pentests

Scientific Software Center (2026) 112

Security: best practices

Scientific Software Center (2026) 113

Chen, Barbar, Security for Machine Learning-based Software Systems, DOI 10.1145/3638531

Legal aspects

Dr. Inga Ulusoy, Scientific Software Center (2025) 114

Legal aspects

- If you reuse data / models / code: Make sure the license terms allow this and
that your license(s) is (are) compatible

- Make sure you do not violate the DSGVO / GDPR / European Data Act /
Copyright / European AI Act

- Once a model is made available, it is impossible to restrict its use!
- Examples:

- Models can put out near-exact copies of images/text in training data, ie Dall-E/Stable Diffusion
generating images with Shutterstock/Getty Images watermarks, or reproducing artist’s work

- Code-generating tools such as GitHub copilot allow recreation of code, that is already
contained in other software, regardless of the license terms of that software

Scientific Software Center (2026) 115

Ethical aspects

Dr. Inga Ulusoy, Scientific Software Center (2025) 116

Ethical aspects

- Be aware of people’s tendency of overreliance!
- ELIZA effect: the tendency of users to project human traits onto interactive software
- Trusting into predictions above one’s own assessment

- Misuse of AI by bad actors
- Face recognition used to detect Uyghur population (China), Clearview used to track people’s

movement and employment status by police officers (even though use was prohibited)
- Facial analysis used to track people’s attention on billboards, change advertisement based on

their demographic
- Source of truth during training

- Data that foundation models are trained on does also contain false statements, ie law
professor incorrectly accused of sexual harassment

- Data in foundation models contains toxicity of the internet; human labor is used to label /
annotate toxic text and images ie subcontracting workers in Kenya (OpenAI)

Scientific Software Center (2026) 117

Infamous AI mistakes

Dr. Inga Ulusoy, Scientific Software Center (2025) 118

AI in general

- Automatization at amazon: Experimental hiring tool, developed by a team of
five, used artificial intelligence to give job candidates scores ranging from one
to five stars

- Tool was trained on all resumes of the last 10 years
- Tool preferably suggested male candidates, penalyzing resumes that

contained the word “women’s” or graduates from all-female colleges

- Why?

Scientific Software Center (2026) 119

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-id
USKCN1MK08G/ (2018)

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G/

Automated resume selection at amazon

- The dataset consisted of the resumes of the last 10 years: Predominantly
male applicants

- Women are underrepresented in tech:
https://fingfx.thomsonreuters.com/gfx/rngs/AMAZON.COM-JOBS-AUTOMATION/010080Q91F6/index.html

- Thus, the model learnt it was more often correct if it suggested male
candidates: Unbalanced representation of the dataset

Scientific Software Center (2026) 120

https://fingfx.thomsonreuters.com/gfx/rngs/AMAZON.COM-JOBS-AUTOMATION/010080Q91F6/index.html

AI in general

- U.S. healthcare system uses commercial algorithms to guide health decisions
- Algorithm (Optum’s Impact Pro) to target patients for “high-risk care

management” programs
- Identify patients who benefit the most: https://www.science.org/doi/10.1126/science.aax2342

- Model is trained on healthcare spendings to determine the healthcare need
- Algorithm was much more likely to recommend white patients for these

programs than black patients, even though the black patients were evidently
sicker

- Why?

Scientific Software Center (2026) 121

https://www.science.org/doi/10.1126/science.aax2342

Bias in healthcare need estimation

- Training based on healthcare spendings: But people of color are more likely
to have lower incomes - making them less likely to access medical care even
if they are insured

- Also, they may experience higher barriers to accessing health care
(geography, transportation, work/childcare constraints), in addition to direct
doctor-patient bias

- Data shows that race is correlated with substantial differences in health-care
spendings: This results in a bias of the trained model

Scientific Software Center (2026) 122

AI mistakes in research software

- Applying machine learning methods to COVID-19 radiological imaging for
improving the accuracy of diagnosis

- Distinguish patients with COVID-19 from patients without COVID-19 but also
bacterial pneumonia

- Tools were trained on public datasets with CT and CXR images
- Predictive tools failed practical tests: https://www.nature.com/articles/s42256-021-00307-0

- Why?

Scientific Software Center (2026) 123

https://www.nature.com/articles/s42256-021-00307-0

Learning from the image background

- Image dataset was collected
under controlled conditions:
Does not represent the target
distribution of interest

- CNN learnt to distinguish the
image background rather than
the image content

- Actually quite prevalent
problem in computer vision

Scientific Software Center (2026) 124
COIL-100 dataset https://www1.cs.columbia.edu/CAVE/publications/pdfs/Nene_TR96_2.pdf
https://doi.org/10.1016/j.visinf.2021.10.001

https://www1.cs.columbia.edu/CAVE/publications/pdfs/Nene_TR96_2.pdf
https://doi.org/10.1016/j.visinf.2021.10.001

AI mistakes in research software

- Predict whether a country is likely to slide into civil war based on GDP,
poverty rates, type of government structure, etc.

- Complex models using Random Forests and Adaboost outperform more
standard statistical approaches like logistic regression by far

- Missing values in the dataset were constructed using imputation on the
complete dataset

- Models proved to be over-optimistic and erroneous https://doi.org/10.1016/j.patter.2023.100804

- Why?

Scientific Software Center (2026) 125

https://doi.org/10.1016/j.patter.2023.100804

Civil war predictions: Data leakage

● Data leakage: The data was imputed for missing values using the whole
dataset

● Thus, the training dataset contained information about the test dataset
● This leads to an inflated estimate of the model performance

Scientific Software Center (2026) 126

https://doi.org/10.1016/j.patter.2023.100804 supplemental material

https://doi.org/10.1016/j.patter.2023.100804

Classification of failures/errors

Dr. Inga Ulusoy, Scientific Software Center (2025) 127

Data leakage

Spurious relationship between independent variables and target variable

Artifact of collection, sampling, pre-processing

Leads to inflated estimates of model performance

Scientific Software Center (2026) 128Kapoor, Narayanan, DOI: 10.1016/j.patter.2023.100804

Lack of clean separation training/test
- no test set
- pre-processing on training and test set (over/under sampling, imputation)
- feature selection on entire dataset
- duplicates in dataset

Data leakage

Scientific Software Center (2026) 129Kapoor, Narayanan, DOI: 10.1016/j.patter.2023.100804

Model uses features that are not legitimate
- for example, use of a certain drug when predicting illness (hypertensive drug, antibiotics)

Test set is not drawn from distribution of scientific interest
- temporal leakage (test set must not contain data from before the training set)
- non-independence between training and test samples (same people/units in both sets - use block

cross-validation)
- sampling bias in test distribution (spatial bias, age, image settings)

Resources

- Good practices in machine learning (Mathieu Bauchy)
(https://www.youtube.com/watch?v=WScUQnU-ozQ&t=3213s

- Roadmaps https://roadmap.sh/roadmaps
- Kaggle https://www.kaggle.com/learn
- Hugging Face https://huggingface.co/learn
- REFORMS checklist https://reforms.cs.princeton.edu/
- MLCommons https://mlcommons.org/
- Scikit-learn resources https://scikit-learn.org/stable/common_pitfalls.html
- Testing of non-deterministic software

https://bssw.io/blog_posts/testing-non-deterministic-research-software

Scientific Software Center (2026) 130

https://www.youtube.com/watch?v=WScUQnU-ozQ&t=3213s
https://roadmap.sh/roadmaps
https://www.kaggle.com/learn
https://huggingface.co/learn
https://reforms.cs.princeton.edu/
https://mlcommons.org/
https://scikit-learn.org/stable/common_pitfalls.html
https://bssw.io/blog_posts/testing-non-deterministic-research-software

