
3. Research Data Quality



● Data must contain all ranges of the condition that is to be sampled
○ For example: To predict the impact of temperature on reactivity, all temperatures that are of 

interest need to be sampled (predictions only interpolate between data points but cannot 
extrapolate).

○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2 
years, for scientific journals.

Collecting data
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Collecting data

● Data must be homogeneous throughout feature space
○ For example: If temperature and pressure are both sampled, all combinations of features must 

be recorded for a homogeneous distribution of data points.
○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2 

years, for scientific journals.
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Collecting data

● Data must be of good quality
○ Whether it is real or synthetic data, the model can only make accurate predictions if the data 

itself is accurate.
○ For example: CiteScore (Scopus citation index) vs. citations over all documents from last 2 

years, for scientific journals
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Collecting data

● Data volume must be sufficient
○ Only with enough data can a model be trained to make accurate predictions.
○ For example: Complex data - more data points required; simpler data - fewer data points 

required
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Collecting data

● Depending on the type of learning, data must be labeled and labeled correctly
○ Incorrect labelling interferes with the learning process.
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Photo by nishizuka: 
https://www.pexels.com/photo/brown-chihuahua-485294/

Photo by Maksim Goncharenok: 
https://www.pexels.com/photo/a-chocolate-muffin-on-blue-surfac
e-5994864/



Data preparation

● Make sure data is clean.
○ Correct typos, misidentified data types
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Photo by nishizuka: 
https://www.pexels.com/photo/brown-chihuahua-485294/

Chihuahuah →Chihuahua

“26-04-24” →2024-04-26



● Make sure data is homogeneous.
○ Visualize the data and use clustering analysis to identify outliers.
○ Use df.describe() and plotly.express to better understand your data

Data preparation
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Data preparation

● Remove duplicates.
○ Duplicates introduce bias.
○ Use df.drop_duplicates()
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Data preparation

● Feature Engineering: Select influential features, remove unnecessary ones.
○ Unimportant features increase the complexity and reduce robustness.
○ For example: only choose features that are clearly correlated
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Data preparation
● Feature Engineering: Normalize features.

○ Features should have similar data ranges for the weights to be in similar ranges, and 
improved model robustness and faster training.
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Data preparation

● Make sure to randomize your data.
○ Otherwise, your train and test data could contain more/less data of a certain kind 

(inhomogeneous data)
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Data preparation

● Feature engineering: Make sure your dataset is balanced.
○ For classification tasks, all classes should have comparable sizes (similar numbers of 

examples).
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Data preparation

● Feature engineering: Pick the right scale.
○ Visualize your data to see if you need to transform ie. onto a log scale.
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linear scale log scale


