
5. Software Engineering 
best practices



Version Control: git

What is this?

A tool to allow you to track and revert changes, and collaborate with others 
(change management).

Why is this important? 

- Allow versioning of the code and continuing functionality.
- Allow simultaneous changes to the same files.
- Fundamental for reproducing historic states in the line of development.
- Development follows a story and allows other users to build confidence in 

your work.

Dr. Inga Ulusoy, Scientific Software Center (2025)       51



Version Control in practice: git

- Create a repo on GitHub
- Clone the repo to your local machine
- Checkout a branch and make changes
- git add, git commit and git push: IDEs such as VSCode make it easy for 

you!
- Observe how your repo changes on GitHub
- GitHub offers great learning labs: GitHub skills https://skills.github.com/ 
- roadmap.sh offers a git roadmap: https://roadmap.sh/git-github 

Dr. Inga Ulusoy, Scientific Software Center (2025)       52

https://skills.github.com/
https://roadmap.sh/git-github


Development workflows: GitHub-flow

What is this?

GitHub-flow is a lightweight workflow with creating branches, making changes, 
opening Pull Requests, running Continuous Integration, and requesting code 
review, together with Issues and Kanban project boards.

Why is this important? 

- Manage how changes are incorporated in the software.
- Track progress in your project and highlight bottlenecks.
- Adhere to development guidelines, ensuring the implementation follows 

defined rules to ensure software quality.

Dr. Inga Ulusoy, Scientific Software Center (2025)       53



Development workflows in practice: GitHub-flow

- After you made changes in your git branch, open a Pull Request on GitHub
- Observe how the PR highlights the changes in the line of development
- You can link issues, comment on the PR and run automated checks
- See GitHub skills https://skills.github.com/ 
- See roadmap.sh https://roadmap.sh/git-github 

Dr. Inga Ulusoy, Scientific Software Center (2025)       54

https://skills.github.com/
https://roadmap.sh/git-github


Requirements engineering and continuous delivery
What is this?

Requirements engineering is the process of translating stakeholder requirements on the 
research software into defined tasks. Early delivery and iteration over it allows refinement of 
the requirements and tasks.

Why is this important? 

- Ensure that the software fulfills its purpose. In research software, requirements 
engineering is closely intertwined with the research process and subject to frequent 
changes.

- Understand the problem the software should solve and map this onto an efficient 
technically feasible solution considering all constraints.

- Allows prioritization of requirements/tasks and decision-making. Decisions should be 
documented together with the requirements. Dr. Inga Ulusoy, Scientific Software Center (2025)       55



Requirements engineering in practice

- Functional requirements (what the software should do: features)
- Non-functional requirements (how the software performs a task: ie 

performance, security)
- Domain requirements (specific to the domain: ie. Healthcare)
- Use tools such as draft.io or miro to gather requirements

Dr. Inga Ulusoy, Scientific Software Center (2025)       56

As a <type of user>, I want 
<some goal> so that <some 

reason>.

As a <researcher>, I want 
<to obtain the 
probability of a class> 
so that <I can classify 
incoming images>.



Continuous delivery in practice

- Deliver early to find out if your software 
is fulfilling its purpose/moving in the 
right direction

- Use quality control to allow early 
delivery through the main branch in 
your GitHub-flow (keep your main 
branch operational at all times)

- Following agile / lean principles
- Use git to allow consistent usability of 

your software

Dr. Inga Ulusoy, Scientific Software Center (2025)       57

Planning

Analysis

Design
Implementation, 

Testing

Delivery / 
Maintenance

Software 
Development 

Life Cycle



Project management: Kanban boards

What is this?

Project management is used to track progress, identify intertwined or dependent 
processes, and allows visual access to the project’s status.

Why is this important? 

- Ensure that the software development moves in the right direction.
- Increase the flow of ongoing work.
- Allow prioritization of tasks and understand interdependencies and 

bottlenecks in the development.

Dr. Inga Ulusoy, Scientific Software Center (2025)       58



Project management in practice

- Use a Kanban board to organize tasks
- Separate tasks into backlog/todo, in progress, done
- Prioritize tasks and assign contributors/identify necessities
- For example, GitHub projects

Dr. Inga Ulusoy, Scientific Software Center (2025)       59



Project planning: Architecture and design

What is this?

Software architecture describes how the system is composed of different pieces, 
and the interplay of the components. Design refers to the actual implementation of 
the requirements in the system as a whole and the different components.

Why is this important? 

- Makes the software efficient and allow re-use of functionalities.
- Allows extensions and additions of features at a later stage without major 

refactoring.
- Makes the software maintainable.

Dr. Inga Ulusoy, Scientific Software Center (2025)       60



Architecture in practice

- Use (black/white) box diagrams to identify components and their interactions
- https://roadmap.sh/software-design-architecture / miro / draft.io / draw.io

Dr. Inga Ulusoy, Scientific Software Center (2025)       61

server
client

service database

service

https://roadmap.sh/software-design-architecture


Design in practice
- Map the input/output, data formats, transformations / logic / processes
- https://roadmap.sh/software-design-architecture / miro / draft.io / draw.io

Dr. Inga Ulusoy, Scientific Software Center (2025)       62

https://roadmap.sh/software-design-architecture


Quality management: Testing and continuous Integration

What is this?

GitHub-flow is a lightweight workflow with creating branches, making changes, 
opening Pull Requests, running Continuous Integration, and requesting code 
review, together with Issues and Kanban project boards.

Why is this important? 

- Manage how changes are incorporated in the software.
- Track progress in your project and highlight bottlenecks.
- Adhere to development guidelines, ensuring the implementation follows 

defined rules to ensure software quality.

Dr. Inga Ulusoy, Scientific Software Center (2025)       63



Testing in practice

- Use testing frameworks such as pytest
- Write tests in a tests/ folder: unit tests, integration tests, system tests, 

compatibility tests, …
- To learn how to use pytest: https://docs.pytest.org/en/stable/, 

https://realpython.com/pytest-python-testing/ 

Dr. Inga Ulusoy, Scientific Software Center (2025)       64

https://docs.pytest.org/en/stable/
https://realpython.com/pytest-python-testing/


Continuous integration in practice

- Set up your tests to be automatically run by GitHub actions
- Include code linter and quality control in your actions
- These should be set up to run automatically when you open a Pull Request
- GH actions, codecov, sonarcloud, snyk, pre-commit, code formatting 

(black), GitHub Guardian, dependabot

Dr. Inga Ulusoy, Scientific Software Center (2025)       65



Software Management Plans

What is this?

Software Management Plans (SMPs) help to identify goals and the means 
required to pursue the goals in practice.

Why is this important? 

- Identify criticality and required maturity of your software.
- Identify which measures are needed to ensure compliance of your software 

with the intended goals.
- Quantify milestones and tools for the intended purpose.

Dr. Inga Ulusoy, Scientific Software Center (2025)       66



SMPs in practice

- Use the SMPs provided by the Max 
Planck digital library

- Helps you with your requirements 
and project management

- https://rdmo.mpdl.mpg.de/ 

Dr. Inga Ulusoy, Scientific Software Center (2025)       67

https://rdmo.mpdl.mpg.de/


Documentation

What is this?

Documentation can be comments, docstrings, readme’s, tutorials, demonstration 
notebooks, and contains technical and domain-specific / application-specific 
descriptions of the software.

Why is this important? 

- Document what the software can and cannot do, and parameter ranges.
- Allow others to install and use your software (or yourself, at a later time).
- Allow others to contribute to your software.

Dr. Inga Ulusoy, Scientific Software Center (2025)       68



Documentation in practice

- Use tools like sphinx and 
mkdocs to render docstrings 
and markdown at minimal 
effort

- Include jupyter notebooks that 
showcase use of your 
software - these can be run on 
google colab

- Document dependencies in a 
requirements file and provide 
installation instructions

Dr. Inga Ulusoy, Scientific Software Center (2025)       69



Deployment: Runtime environment / containerisation

What is this?

Deployment information such as runtime environments or containers allow easy 
adaption as they provide direct access to running the software without installation 
and dependency conflicts.

Why is this important? 

- A big step towards reproducibility and transferability of your approach.
- The software ecosystem changes quickly, and this allows to preserve a 

snapshot that can be shared and run easily.

Dr. Inga Ulusoy, Scientific Software Center (2025)       70



Containerisation in practice

- Use docker to provide build instructions for containers, and possibly deploy 
the containers on Dockerhub for anyone to download and use

- Docker roadmap https://roadmap.sh/docker, official tutorial 
https://docs.docker.com/  

Dr. Inga Ulusoy, Scientific Software Center (2025)       71

https://roadmap.sh/docker
https://docs.docker.com/


Software Licensing

What is this?

A software license states the terms of use, re-use and distribution, among others, 
without violating copyrights, and defines responsibilities.

Why is this important? 

- So that others may use your code, and to prevent misuse.
- So that others may contribute to your code.
- So that the responsibilities for how the software is used are clear.
- Establishes the rights of all parties involved with the software. 

Dr. Inga Ulusoy, Scientific Software Center (2025)       72



Software licensing in practice

- Use the provided templates from GitHub: Either at repository creation or 
when adding a new file called LICENSE

- Permissive open-source license: BSD 2-Clause, MIT, Apache License 2.0
- Copyleft open-source license: GNU version 3, LGPL
- Proprietary licenses: Do not only keep your project close-source and 

potentially less visible, but also carry responsibilities for contract fulfillment
- https://opensource.org/licenses, https://choosealicense.com/ 
- When using/incorporating third-party software: ie. use of open-source 

libraries - is the third-party code distributed with your software? If so, 
compatibility needs to be confirmed!

Dr. Inga Ulusoy, Scientific Software Center (2025)       73

https://opensource.org/licenses
https://choosealicense.com/

