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Software publication

What is this?

A software publication associates a DOI or other persistent identifier with your 
software.

Why is this important? 

- This makes your software citable in scientific publications.
- You can reference your software plus providing the version number that you 

used.
- Your contribution to the scientific community becomes more visible.
- The publication helps you to structure the code and documentation for a 

user’s perspective.
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Software publication in practice

- A list of software-specific journals: 
https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software

- Write a short paper detailing your software, the architecture and design, in- 
and output, and purpose of the software

- Another option is to place a snapshot of your repo on zenodo, this also allows 
you to obtain a DOI

- Another option is to upload your project to Software Heritage and obtain a 
persistent SWHID https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html 
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Software Heritage

https://www.software.ac.uk/top-tip/which-journals-should-i-publish-my-software
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html


Data publication

What is this?

Data can be published in dedicated data repositories and obtain a DOI.

Why is this important? 

- You can publish your datasets, making them available to the community.
- By associating a DOI, you may garner citations.
- Data often is the foundation for reproducing results.
- Data should be stored and preserved separately from the software once it 

reached a stage that it does not change anymore.
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Data publication in practice

- Option A: Publish your data on zenodo and obtain a DOI
- Option B: Publish your data in your institutionally provided data repository, ie 

heiDATA and obtain a DOI
- Option C: Publish your data on community platforms such Hugging Face if 

these provide a DOI
- Make sure your data is clean and does not need to be updated anymore
- Cite your own data repository in your publications
- You can also download your own data dynamically within your code, ie,. using 

pooch https://www.fatiando.org/pooch/dev/ or datasets https://huggingface.co/docs/datasets/en/index 

Scientific Software Center (2026)       97

https://www.fatiando.org/pooch/dev/
https://huggingface.co/docs/datasets/en/index


Why share your data?

- Create a larger impact of your scientific work
- Increase transparency and trust in your work
- Enable others to reproduce and build upon your findings
- Contribute to science as a whole
- BUT: Be careful with legal (copyright) and ethical issues! First clarify with your 

advisor/institution.
- Follow the FAIR principle: Findable, Accessible, Interoperable, Reusable
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Image credit: SangyaPundir shared under CC-BY-SA 4.0
The FAIR Guiding Principles for scientific data management and stewardship
https://doi.org/10.1038/sdata.2016.18



Where to share your data

- HeiDATA
- Open Science Framework
- Zenodo
- Figshare
- Dryad
- Hugging face
- Kaggle: no DOI!
- Domain-specific repositories

- i.e. https://lindat.mff.cuni.cz/repository/xmlui/ 
- see https://www.nature.com/sdata/policies/repositories for a list

- For a comparison, see DOI: 10.5281/zenodo.3946720
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Model sharing platforms

You can make models available for others on model sharing platforms like

- Hugging face,
- OpenML,
- Kaggle.

Advantages: Public platform with version control and model cards, you can link 
the data into the repo, allows others to use your model for production or 
fine-tuning.
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Model card

- Model details
- Architecture, parameters, citation information, license information

- Intended use
- Use cases within the model’s scope 

- Performance metrics
- Intended performance on given data

- Training data
- Description of training data and data distribution

- Quantitative analysis
- Potential biases and limitations

- Ethical consideration
- Privacy and fairness concerns, impact on society

- https://huggingface.co/spaces/huggingface/Model_Cards_Writing_Tool 
- https://github.com/openai/gpt-3/blob/master/model-card.md 
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Model deployment

In addition to making models and software available for others to use in their own 
code, you can also directly deploy the model - together with your code - directly so 
that it can be used.

Examples:

- Diffusers: google colab 
https://colab.research.google.com/github/huggingface/notebooks/blob/main/di
ffusers/stable_diffusion.ipynb 

- https://lightning.ai/ for paid service and deployable models
- See 

https://www.freecodecamp.org/news/deploy-your-machine-learning-models-fo
r-free/ for tutorials and services
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REFORMS checklist

To ensure reproducibility, include a checklist such as the REFORMS checklist into 
the publication of your results. 

There are a couple of domain-specific checklists, especially in health and life 
sciences (STARD, CLAIM, see the EQUATOR* network), that may be more 
appropriate - REFORMS aims to be most general.
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REFORMS checklist: DOI 10.48550/arXiv.2308.07832, https://reforms.cs.princeton.edu/ 
*EQUATOR Network, https://www.equator-network.org/reporting-guidelines/ 

https://reforms.cs.princeton.edu/
https://www.equator-network.org/reporting-guidelines/


Interoperability and RAI
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Interoperability
- Ability to interact with other systems 

interchangeably (i.e. transformers, pytorch)
- Exchange information with other systems
- Integrate into other systems

Use data and models in different contexts

RAI
- Develop, assess, deploy AI systems safe and 

ethically
- Prioritize equitable and beneficial outcome of 

the AI system in the system development
- people and their goals at the center of design 

fairness, reliability, transparency, safety, 
privacy, security, inclusiveness, 

accountability



MLCommons

- To accelerate artificial intelligence innovation and increase its positive impact on society
- Targets industry and academia
- Democratize machine learning through open industry-standard benchmarks that measure quality 

and performance and build open, large-scale, and diverse datasets to improve AI models
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Croissant: an interoperable data format

Croissant 🥐 is a high-level format for machine learning datasets

Metadata: standardized description of the dataset, including 
responsible ML aspects

Resources: one or more files or other sources containing the raw 
data

Structure: how the raw data is combined and arranged into data 
structures for use

ML semantics: how the data is most often used in an ML context

Find, inspect, and use the data in your favorite ML framework!
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https://github.com/mlcommons/croissant
https://doi.org/10.52202/079017-2610


Croissant file
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an ontology for a 
schema



Croissant file
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Work with croissant datasets

Loading:

Using as a base for training:
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- use tfds builder for loading
- builder compatible with tensorflow, 

pytorch, JAX
- eclair MCP server to use croissant with 

an AI agent
- Very active and open group of 

contributors
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RAI

Croissant RAI specification https://docs.mlcommons.org/croissant/docs/croissant-rai-spec.html 
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Software security

- Threat modelling: who, what, how
- Data-oriented attack: Access training data, poison data, inject trojan data
- Model-oriented attack: Modify training process (pre-trained malicious models), 

manipulate the deployed model (model patches, privacy information leakage, 
model inversion attacks)

- System-oriented attack: specialised hardware accelerators for ML software 
(SOC, trojan in GPU/TPU, for model corruption, backdoor insertion, model 
extraction, spoofing, information extraction, sybil attack)

- Possibility to carry out pentests
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Security: best practices
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Chen, Barbar, Security for Machine Learning-based Software Systems, DOI 10.1145/3638531 



Legal aspects
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Legal aspects

- If you reuse data / models / code: Make sure the license terms allow this and 
that your license(s) is (are) compatible

- Make sure you do not violate the DSGVO / GDPR / European Data Act / 
Copyright / European AI Act

- Once a model is made available, it is impossible to restrict its use!
- Examples:

- Models can put out near-exact copies of images/text in training data, ie Dall-E/Stable Diffusion 
generating images with Shutterstock/Getty Images watermarks, or reproducing artist’s work

- Code-generating tools such as GitHub copilot allow recreation of code, that is already 
contained in other software, regardless of the license terms of that software
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Ethical aspects
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Ethical aspects

- Be aware of people’s tendency of overreliance!
- ELIZA effect: the tendency of users to project human traits onto interactive software
- Trusting into predictions above one’s own assessment

- Misuse of AI by bad actors
- Face recognition used to detect Uyghur population (China), Clearview used to track people’s 

movement and employment status by police officers (even though use was prohibited)
- Facial analysis used to track people’s attention on billboards, change advertisement based on 

their demographic
- Source of truth during training

- Data that foundation models are trained on does also contain false statements, ie law 
professor incorrectly accused of sexual harassment

- Data in foundation models contains toxicity of the internet; human labor is used to label / 
annotate toxic text and images ie subcontracting workers in Kenya (OpenAI)
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Infamous AI mistakes
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AI in general

- Automatization at amazon: Experimental hiring tool, developed by a team of 
five, used artificial intelligence to give job candidates scores ranging from one 
to five stars

- Tool was trained on all resumes of the last 10 years
- Tool preferably suggested male candidates, penalyzing resumes that 

contained the word “women’s” or graduates from all-female colleges 

- Why?
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Automated resume selection at amazon

- The dataset consisted of the resumes of the last 10 years: Predominantly 
male applicants

- Women are underrepresented in tech: 
https://fingfx.thomsonreuters.com/gfx/rngs/AMAZON.COM-JOBS-AUTOMATION/010080Q91F6/index.html 

- Thus, the model learnt it was more often correct if it suggested male 
candidates: Unbalanced representation of the dataset
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AI in general

- U.S. healthcare system uses commercial algorithms to guide health decisions
- Algorithm (Optum’s Impact Pro) to target patients for “high-risk care 

management” programs
- Identify patients who benefit the most: https://www.science.org/doi/10.1126/science.aax2342 

- Model is trained on healthcare spendings to determine the healthcare need
- Algorithm was much more likely to recommend white patients for these 

programs than black patients, even though the black patients were evidently 
sicker

- Why?
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Bias in healthcare need estimation

- Training based on healthcare spendings: But people of color are more likely 
to have lower incomes - making them less likely to access medical care even 
if they are insured

- Also, they may experience higher barriers to accessing health care 
(geography, transportation, work/childcare constraints), in addition to direct 
doctor-patient bias

- Data shows that race is correlated with substantial differences in health-care 
spendings: This results in a bias of the trained model
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AI mistakes in research software

- Applying machine learning methods to COVID-19 radiological imaging for 
improving the accuracy of diagnosis

- Distinguish patients with COVID-19 from patients without COVID-19 but also 
bacterial pneumonia

- Tools were trained on public datasets with CT and CXR images
- Predictive tools failed practical tests: https://www.nature.com/articles/s42256-021-00307-0

- Why?
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Learning from the image background

- Image dataset was collected 
under controlled conditions: 
Does not represent the target 
distribution of interest

- CNN learnt to distinguish the 
image background rather than 
the image content

- Actually quite prevalent 
problem in computer vision
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AI mistakes in research software

- Predict whether a country is likely to slide into civil war based on GDP, 
poverty rates, type of government structure, etc.

- Complex models using Random Forests and Adaboost outperform more 
standard statistical approaches like logistic regression by far

- Missing values in the dataset were constructed using imputation on the 
complete dataset

- Models proved to be over-optimistic and erroneous https://doi.org/10.1016/j.patter.2023.100804 

- Why?
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Civil war predictions: Data leakage

● Data leakage: The data was imputed for missing values using the whole 
dataset

● Thus, the training dataset contained information about the test dataset
● This leads to an inflated estimate of the model performance
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https://doi.org/10.1016/j.patter.2023.100804 supplemental material

https://doi.org/10.1016/j.patter.2023.100804


Classification of failures/errors
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Data leakage

Spurious relationship between independent variables and target variable

Artifact of collection, sampling, pre-processing

Leads to inflated estimates of model performance
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Lack of clean separation training/test
- no test set
- pre-processing on training and test set (over/under sampling, imputation)
- feature selection on entire dataset
- duplicates in dataset



Data leakage
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Model uses features that are not legitimate
- for example, use of a certain drug when predicting illness (hypertensive drug, antibiotics)

Test set is not drawn from distribution of scientific interest
- temporal leakage (test set must not contain data from before the training set)
- non-independence between training and test samples (same people/units in both sets - use block 

cross-validation)
- sampling bias in test distribution (spatial bias, age, image settings)



Resources

- Good practices in machine learning (Mathieu Bauchy) 
(https://www.youtube.com/watch?v=WScUQnU-ozQ&t=3213s 

- Roadmaps https://roadmap.sh/roadmaps 
- Kaggle https://www.kaggle.com/learn 
- Hugging Face  https://huggingface.co/learn 
- REFORMS checklist https://reforms.cs.princeton.edu/ 
- MLCommons https://mlcommons.org/ 
- Scikit-learn resources https://scikit-learn.org/stable/common_pitfalls.html
- Testing of non-deterministic software 

https://bssw.io/blog_posts/testing-non-deterministic-research-software 
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