
Scientific Software 
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for 
Scientific Computing, Heidelberg University

January 2024



What you will learn...

• How to develop scientific software professionally:
• No more broken code through version control/rigorous code 

review/testing/...

• Track your progress and analyze your code

• Manage your implementation in a way that facilitates further additions to the 
code

• Generate reproducible and reliable scientific results

• Make your contributions as a "research software engineer" visible

2



Overview

Unit 1
Introduction to git: 

Using git and GitHub

Unit 2
Clean coding as a 
team: Adhere to 
guidelines and 

common coding 
principles

Unit 3
Think before you 
code: Planning your 
programming project

Unit 4
Documenting 

software

Unit 5
Software testing

Unit 6
Continuous 
integration (CI): 
GitHub Actions; 
also: publishing code

3



Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

4



What is git?

• A version control system (VCS) = software to track changes in 
files and work collaboratively, supports non-linear workflows

• Originally created in 2005 by Linus Torvalds (Linux kernel) and 
others

• "git" can mean anything, depending on your mood. Stupid. 
Contemptible and despicable. Simple. Take your pick from the 
dictionary of slang. "Global information tracker": you're in a 
good mood, and it actually works for you. Angels sing, and a 
light suddenly fills the room. "Goddamn idiotic truckload of 
sh*t": when it breaks. [source: https://github.com/git/git ]

5

https://github.com/git/git


Characteristics of git

• Non-linear development

• Distributed development

• Compatibility (HTTP, ssh)

• Efficiency

Very useful to keep track of 
development among a team 

of developers

6



git version control system (VCS)

git is a distributed version control system that keeps track of your 
changes to the software. Distributed means that every developer has a 
complete copy of the project, including its history.

git server

version 
database

developer B

version 
database

developer M

version 
database

7



git version control system (VCS)

• Revert file to previous state

• Revert entire project to previous state

• Review changes over time

• Review and track issues, …

Commit:
A snapshot of your file 

system 
A commit saves the state of 

your project at that time.

Repository:
A directory containing 

your project and 
additional files to 

communicate with git
This is not equivalent to 
your working directory.

Checkout:
A copy of repository 

content in your working 
directory

This can be a specific file, 
commit, branch, ...

Branch:
A new line of 

development in your 
project

The branch leaves the main 
status of the project 

unchanged.

8



The three stages of git

modified:
File has been modified but 

changes are not committed 
to database yet.

staged:
Modified file has been 

marked to be committed (to 
be included in the next 

snapshot).

committed:
Modified file has been added 

to the local database.

Working directory
Staging area

(Staging index)
.git directory 
(repository)

9



git commits
main 

(master) 
branch

This is the default branch.

C0

first commit
Contains 
some file

10



git commits
main 

(master) 
branch

This is the default branch.

C0

first commit
Contains 
some file

Work on 
the file - 
changes

11



git commits
main 

(master) 
branch

Head now points to second 
commit.

C0 C1

first commit second commit

Work on 
the file - 
changes

12



git commits
main 

(master) 
branch

Head now points to second 
commit.

C0 C1

first commit second commit

More work 
on the file 
- changes

13



git commits
main 

(master) 
branch

Head now points to third 
commit.

C0 C1 C2

first commit second commit third commit

More work 
on the file 
- changes

14



git

• Please download and complete the intro in the game Oh-My-Git!

https://ohmygit.org/

15

https://ohmygit.org/


Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

16



Remote repositories

developer M

local 
repository

git server

remote 
repository

push

pull

Remote repositories are hosted on the internet or network. You can set 
up your own git server or use services such as GitHub, GitLab or 
Bitbucket.

17



Remote repositories: GitHub

• Cloud-based service helping developers store 
their development projects, offering git version 
control, website interface

• Currently 100 million developers use GitHub, 
372 million repos: largest source code host

• For-profit: makes money hosting private repos + 
business plans

• Subsidiary of Microsoft since 2008

18



Additional benefits of GitHub

• Issue tracking: You can open issues, comment on them, close them in 
Pull Requests

• Pull Requests: When you finished a line of implementation, allows to 
comment, highlight lines of code, interact with collaborators (review)

• Documentation through GitHub pages, wiki, Readme

• GitHub actions: CI/CD

• Discussions

• Projects (agile)

• Codespace, GitHub copilot ...

19



git cloud hosting services

• GitHub

• GitLab

• BitBucket

• AWS CodeCommit

• ...

Differences: GitHub mostly focused on collaboration and open-source while GitLab 
emphasizes features and offers platform for web developers. Also: more private 
repos on GitLab (same for BitBucket).

We will use GitHub. Please create a user account on www.github.com

20



GitHub

Using GitHub in your browser does not require you to know all the git 
commands. Please complete the GitHub learning lab I sent as an 
assignment.

You will learn about commits, branches, merging and pull requests in 
this learning lab. Pull requests are very useful as they give you a chance 
to discuss your changes to the code with your collaborators.

21



Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

22



Creating branches

Branches represent a new line of 
development and keep your commit 

history clean.

git checkout –b "my-branch"

23



git commits and branches
main 

(master) 
branch

This is the default branch.

C0 C1 C2

first commit second commit third commit

24



main 
(master) 
branch

C0 C1 C2

feature 
branch

This is the new feature branch.

git commits and branches

25



main 
(master) 
branch

C0 C1 C2

feature 
branch

C3

git commits and branches

26



main 
(master) 
branch

C0 C1 C2

C3

feature 
branch

C4

git commits and branches

27



main 
(master) 
branch

C0 C1 C2

C3

feature 
branch

C4

C5

hotfix
branch

A bug was found in the 
program and fixed in the hotfix 
branch.

git commits and branches

28



Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

29



main 
(master) 
branch

C0 C1 C2

C3

feature 
branch

C4

C5

hotfix
branch

hotfix branch was merged into 
main ("fast-forward")

Merging branches

"fast-forward" merge: branch has 
one direct ancestor and merging is 
straightforward
(direct linear path of development)

30



main 
(master) 
branch

C0 C1 C2

C3

feature 
branch

C4

C5

Merging branches

31



main 
(master) 
branch

C0 C1 C2

C3

feature 
branch

C4

C5
common ancestor

snapshot to merge into

snapshot to merge in

Merging branches

Non-linear path of development: 
Multiple paths

32



main 
(master) 
branch

C1 C2

C3

feature 
branch

C4

C5 C6

feature branch was merged 
into main ("recursive")

C6 is a "merge commit" - has 
more than one parent

Merging branches

33



git commits, branches and merges

• Not every automatic merge happens without conflict – sometimes you have to 
manually resolve the conflicts and commit

• To merge a branch using the command line: switch to main using git checkout 
main and then merge git merge my-branch-to-merge

• To delete a branch using the command line: git branch -d my-branch-to-delete

• To list your branches: git branch (the * marks which branch you have currently 
checked out)

• Display branches on remote: git branch -r

• Delete branch on remote: git push origin –delete my-branch-to-delete

• Other useful git commands: git diff and git status
https://dangitgit.com/

34



git workflow and git commands

1. git clone the-repository-URL to clone an existing repository from the 
remote server or turn a local directory into a git repository through git init

2. create a branch in your local repository where you make your changes to the 
code through git branch your-branch-name and then checking out the 
branch through git checkout your-branch-name

3. make your changes in your branch

4. stage your changes through git add your-changed-files

5. commit your changes to your local repository through git commit –m 
"your-meaningful-commit-message"

6. push your changes to the remote repository through git push or git push –u 
origin your-branch-name if your local branch is not yet initialized on the remote

Workflow will be demonstrated during the life 
session!!

35



Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

36



Jupyter Notebooks

• Jupyter Notebooks provide a web-based interactive 
computational environment

• An interesting perspective on interactive notebooks can be 
found here: https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-

is-obsolete/556676/

• Jupyter Notebooks support different kernels, we will use the 
iPython kernel (the Python execution backend of Jupyter)

• Possible to write both code and markdown (explanatory text), 
generate visualizations,… - very useful as the first step in the 
life cycle of scientific software

37

https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/


A quick demonstration ...

Jupyter Notebooks

38



Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

39



git hooks
• hooks are scripts that run automatically upon a particular event

• hooks live in the .git/hooksdirectory (take a look at your .git/hooks directory 
to see which sample hooks are there. If you want to activate one of them, remove 
the ".sample" extension and make the script executable).

• hooks are local: they are not copied upon git clone! Maintaining hooks and 
ensuring everyone is using the same hooks is tricky.

• Usually hooks are used to ensure clean commits (i.e. ensure the commit message 
contains a certain amount of information, check for stylistic errors, etc).

staged 
changes

commit 
changes

enter commit 
message

complete 
commit

pre-
commit

post-
commitHooks

40



git hooks

• Use to encourage certain commit policies

pre-
commit

• inspect for styling 
or formatting errors

• prepare commit 
message

post-
commit

• mostly for 
notification 
purposes

41



Jupyter notebooks on GitHub

• The thing about Jupyter notebooks and 
git: The diffs that usually show in a pull 
request, and generally any diffs between 
commits are rendered as JSON, which is 
somewhat readable, but the images 
(binary) lead to problems. There is 
a variety of tools that address this 
problem; we will be using pre-commit 
hooks (nbstripout) to clear the 
notebooks before committing to the 
remote repository.

• Diffs blow up git history

https://nextjournal.com/schmudde/how-to-version-control-jupyter
42

https://nextjournal.com/schmudde/how-to-version-control-jupyter


Use a package manager for your hooks

• We will use pre-commit for managing our hooks.

pip install pre-commit

pip install --upgrade nbstripout

• Add a .pre-commit-config.yaml file to your repository with the contents:

• Run pre-commit install to install the hook.

• Feel free to add additional useful hooks.

repos:
- repo: https://github.com/kynan/nbstripout
 rev: 0.6.1
 hooks:
 - id: nbstripout

https://github.com/kynan/nbstripout

https://pre-commit.com/hooks.html

43

https://github.com/kynan/nbstripout
https://github.com/kynan/nbstripout
https://pre-commit.com/hooks.html


Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

44



Useful git commands

• If you don't know your git, this page may be 
helpful: https://dangitgit.com/

• There is a git cheat sheet here: https://education.github.com/git-
cheat-sheet-education.pdf

• We will later use VSCode (or your preferred IDE), which does not 
require you to know all the commands by heart. But it is good to have 
a basic understanding of what these do – there are situations when 
you may need them still.

45

https://dangitgit.com/
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf


Unit 1: Introduction to git and GitHub

❖What is git?

❖What is GitHub?

❖Creating branches

❖Merging branches

❖Jupyter notebooks

❖Pre-commit hooks

❖Useful git commands

46



Live lesson

• We will work on some code examples in git repositories during the 
live lessons. You will need git, Python and Jupyter Notebooks installed 
on your computer. You will need numpy, pandas and seaborn.

47



Live lesson - Demonstrations

• The following demonstrations will take place in the beginning of the 
live session:
o Set up a git repository

o Interact with GitHub as remote server

o Install and use pre-commit hooks

48


	Slide 1: Scientific Software Development
	Slide 2: What you will learn...
	Slide 3: Overview
	Slide 4: Unit 1: Introduction to git and GitHub
	Slide 5: What is git?
	Slide 6: Characteristics of git
	Slide 7: git version control system (VCS)
	Slide 8: git version control system (VCS)
	Slide 9: The three stages of git
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: git
	Slide 16: Unit 1: Introduction to git and GitHub
	Slide 17
	Slide 18
	Slide 19: Additional benefits of GitHub
	Slide 20: git cloud hosting services
	Slide 21: GitHub
	Slide 22: Unit 1: Introduction to git and GitHub
	Slide 23: Creating branches
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Unit 1: Introduction to git and GitHub
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Unit 1: Introduction to git and GitHub
	Slide 37: Jupyter Notebooks
	Slide 38: Jupyter Notebooks
	Slide 39: Unit 1: Introduction to git and GitHub
	Slide 40: git hooks
	Slide 41: git hooks
	Slide 42: Jupyter notebooks on GitHub
	Slide 43: Use a package manager for your hooks
	Slide 44: Unit 1: Introduction to git and GitHub
	Slide 45: Useful git commands
	Slide 46: Unit 1: Introduction to git and GitHub
	Slide 47: Live lesson
	Slide 48: Live lesson - Demonstrations

