
Scientific Software
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for
Scientific Computing, Heidelberg University

January 2024

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting and performance of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

You will start to work collaboratively with your team.

2

Technical debt

• The result of prioritizing speed over clean code.

• Refactoring: The process of restructuring existing code and
thereby removing technical debt.

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

3

Technical debt hinders development

• A high technical debt makes it much more cumbersome to implement
new features.

https://commadot.com/the-ux-of-technical-debt/

You will save time in the long run by
keeping your code clean.

4

Clean code: Coding best
practices

write comments and
documentation

Advice: actively use comments
in the documentation through tools
like i.e. sphinx or doxygen – this
way your comments will not
become outdated!

write efficient but readable
code

Making use of functions and classes
(methods) can be very efficient, but
sometimes hard to read.

use helper methods

A method should only do what
it is supposed to. Anything else
should be contained in other
functions/methods.

no hardcoding

Those should be constants and
declared in the overhead.

proper naming conventions

The names of variables and
procedures should be meaningful.
(ideally in English)

reuse functionality

Implement features in a way
that enables reuse of
functionality in different
contexts. Do not repeat yourself.

proper styling

The indentation and styling
should be consistent
throughout the project. Avoid
deep nesting and too long lines.

no imaginary future cases

Don't write code for
imaginary future scenarios.
Only write what you need.

use existing libraries

You will not be able to code
more efficient than the pros.

refactor code

Whenever you have time, refactor
parts of your code.

accuracy before
speed

Make your piece
of code work first,
then improve
efficiency.

develop iteratively

Give breaks, don't write all code in
one go. Iterate over (pieces of) the
code several times.

5

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

6

Style guides

• Python is highly readable if code is pythonic (adhering to Code Style
guidelines)

• PEP-8: Python Enhancement Proposal – a set of rules for writing
pythonic code https://www.python.org/dev/peps/pep-0008/

• Stylized version of PEP-8 https://pep8.org/

• Google style guide for
Python https://google.github.io/styleguide/pyguide.html

7

https://www.python.org/dev/peps/pep-0008/
https://pep8.org/
https://google.github.io/styleguide/pyguide.html

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

8

Python styling do's and don’t's

• Go to https://pep8.org/ and read through these sections:
• https://pep8.org/#code-lay-out

• https://pep8.org/#naming-conventions

• You may read more or also peruse the google recommendations
at https://google.github.io/styleguide/pygui

• The recommendations for naming, especially naming of modules, is
very important if you want to publish your package in the Python
Package Index PyPI

9

https://pep8.org/
https://pep8.org/
https://pep8.org/
https://google.github.io/styleguide/pyguide.html

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

10

Working with an IDE = integrated
development environment
• I will be using VSCode (Visual Studio Code,

https://code.visualstudio.com/) in this course, I recommend that you
install and use this one. You may also use others such as Atom,
Sublime, PyCharm etc if you prefer.

• Features: Syntax highlighting, intelligent code completion, embedded
git, debugging, …

• Many useful extensions

11

https://code.visualstudio.com/

Working with an IDE

• Install VSCode or your chosen IDE and familiarize yourself with its
functionalities. Follow the steps as outlined
here https://code.visualstudio.com/docs/python/python-tutorial

12

https://code.visualstudio.com/docs/python/python-tutorial

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

13

Linting

A Linter automatically highlights styling and syntax errors, as well as
suspicious constructs in your code.

Most IDEs run linters in the background as you work on your code, and
directly highlight problems. Resolve all issues before pushing to your
repository.

Additionally, you can check your code in the terminal by running the
linter manually (i.e. flake8). You will want to run the linter before you
commit, so as a pre-commit hook

https://pypi.org/project/flake8/
https://simpleisbetterthancomplex.com/packages/2016/08/05/flake8.html

14

https://pypi.org/project/flake8/
https://simpleisbetterthancomplex.com/packages/2016/08/05/flake8.html

Linting

• I will be demonstrating the usage of a linter in the live session.

15

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

16

Git: "Clean" repositories

• Only track the files that are essential and cannot be recreated.

• Others should be ignored via .gitignore to keep your repo clean.

Source files: *.py
Documentation files:
*.md
Configuration files: *.yml
...

Temporary files:
 .ipynb_checkpoints/
 __pycache__/
 .pytest_cache/
Output files

17

.gitignore

• Look at the .gitignore file in your repo.

• Look at this page https://git-scm.com/docs/gitignore for
the .gitignore syntax. Are there additional files in your folder that you
should ignore via .gitignore?

18

https://git-scm.com/docs/gitignore

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

19

Pull requests (PR)

• Used to tell others that your added changes are ready for review

• You can discuss the changes in the open pull request

• You may make changes to your code and commit based on the
feedback

• GitHub can run actions such as automated tests, style checks,
coverage etc. upon PR

20

Pull requests

• Once you finish a line of implementation, open a PR

• Tag your teammates as reviewers

• In the review, you can comment on lines of code

• The PR allows to close issues

• After everything is satisfactory: Squash and merge -> keeps your
commit history clean

• Delete your branch on the remote and also locally

fetch –p and branch –d yourbranchname

21

Unit 2: Clean coding as a team

❖Technical debt and clean coding

❖Style guides

❖Working with an IDE

❖Linting of code

❖More on git: “Clean” repositories

❖Pull requests, code review and merging

22

Live lesson

• In the beginning of the live lesson, you will discuss with your
team and decide on naming conventions and general coding style.

• Merge your efforts into one Jupyter notebook in one repo. Each
person in your team will continue to work on their part of the
problem set, and you will use PRs and code review to increase the
quality of your implementation.

• Use a linter to check your notebook for coding style.

• Adhere to the coding best practices!

23

Live lesson - Demonstrations

• The following demonstrations will take place in the beginning of the
live session:
o IDE with Jupyter notebook;

ohow to use a linter; linter for Jupyter notebooks;

o linter as pre-commit hook;

oPR, code review, and merge conflicts.

24

	Slide 1
	Slide 2: Unit 2: Clean coding as a team
	Slide 3: Technical debt
	Slide 4: Technical debt hinders development
	Slide 5: Clean code: Coding best practices
	Slide 6: Unit 2: Clean coding as a team
	Slide 7: Style guides
	Slide 8
	Slide 9: Python styling do's and don’t's
	Slide 10: Unit 2: Clean coding as a team
	Slide 11: Working with an IDE = integrated development environment
	Slide 12: Working with an IDE
	Slide 13: Unit 2: Clean coding as a team
	Slide 14: Linting
	Slide 15: Linting
	Slide 16: Unit 2: Clean coding as a team
	Slide 17: Git: "Clean" repositories
	Slide 18: .gitignore
	Slide 19: Unit 2: Clean coding as a team
	Slide 20: Pull requests (PR)
	Slide 21: Pull requests
	Slide 22: Unit 2: Clean coding as a team
	Slide 23: Live lesson
	Slide 24: Live lesson - Demonstrations

