
Scientific Software
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for
Scientific Computing, Heidelberg University

January 2024

1

Unit 3: Think before you code: Planning your
programming project

▪ The programming paradigm

▪ Planning a piece of software: Demonstrations

▪ Planning a piece of software: Do’s and don’ts

A Python package will be planned and you will start the development
with your team.

2

The programming paradigm

The programming paradigm is an approach of solving a programming
problem.

declarative imperative

Programming through step-by-step
instructions (explicit status updates of
the program).
Focus on how to do something.
• Procedural programming paradigm
• Object-oriented programming

paradigm

Programming through defining goals
but not on how to achieve these.
Focus on what to do.
• Logic programming paradigm
• Functional programming paradigm

(Javascript)
• Database processing approach

Different languages support different paradigms.
Python: Imperative, Procedural, Object-oriented, Functional

3

The programming paradigm

• Procedural: Statements are structured into procedures
(subroutines/functions) with main program calling the procedures.
Allows reuse of procedures through modules/libraries
Multitude of modules can lead to overhead, duplication and difficulty finding correct calls

• Object-oriented: Objects contain both data and methods (classes).
Data hiding (security), code reusability, inheritance
Programming can become quite complex, harder to implement logic

• Functional: Statements are formulated as evaluations of
mathematical functions using lambda calculus.
Simple to understand and debug
Low performance of code, hard to implement

4

Unit 3: Think before you code: Planning your
programming project

▪ The programming paradigm

▪ Planning a piece of software: Demonstrations

▪ Planning a piece of software: Do’s and don’ts

A Python package will be planned and you will start the development
with your team.

5

Planning a piece of software

• I will demonstrate these three different paradigms on a small
example.

6

Planning a piece of software

Take a small example such as the factorial of a given number
(https://en.wikipedia.org/wiki/Factorial), and try to implement it
using two different paradigms. Can you identify advantages and
disadvantages of one or the other paradigm in your specific example?

7

https://en.wikipedia.org/wiki/Factorial

Unit 3: Think before you code: Planning your
programming project

▪ The programming paradigm

▪ Planning a piece of software: Demonstrations

▪ Planning a piece of software: Do’s and don’ts

A Python package will be planned and you will start the development
with your team.

8

Planning a piece of software: Do

• Define input

• Define output

• SEPARATE input and output from the main program logic

Data Processing

Separate overhead from logic

9

Planning a piece of software: Do

• Define data flow

• Clarify processing steps from input to output (the logic) of the
program

Transformation A Transformation B Transformation C

data data data

10

Planning a piece of software: Don't

• Repeat yourself

Transformation A Transformation A'
Transformation B

Input 1adata data

Input 1b

11

Planning a piece of software: Don't

• Mix logic with data transformation

- can make the code hard to read and too complex

if a then:
 if b then:
 mathematical operation

12

Planning a piece of software: Styles

Top-down:
1. Write logic in pseudo code
2. Work out specifics

Bottom-up:
1. Define specifics
2. Design the logic

Bottom-up approach better at detecting
dependencies that influence top level

13

Unit 3: Think before you code: Planning your
programming project

▪ The programming paradigm

▪ Planning a piece of software: Demonstrations

▪ Planning a piece of software: Do’s and don’ts

A Python package will be planned and you will start the development
with your team.

14

Planning a piece of software

• Take a piece of paper and draft a package based on the parts of
the Jupyter notebook that you wrote. Consider: programming
paradigm (style), top-down or bottom-up? Do this without your team.

• In the design, consider that your team will also have contributions to
the program.

15

Live lesson

• Discuss with your team how to implement the Jupyter notebook as a
Python package. Discuss the strategy that you came up with and your
reasoning.

• Identify overlap in the logic/specifics and discuss the implementation
considering reusability and clean code.

16

Live lesson - Demonstrations

• The following demonstrations will take place later in the live session:
oDesign of the software for this specific example

17

	Slide 1
	Slide 2: Unit 3: Think before you code: Planning your programming project
	Slide 3: The programming paradigm
	Slide 4: The programming paradigm
	Slide 5: Unit 3: Think before you code: Planning your programming project
	Slide 6: Planning a piece of software
	Slide 7: Planning a piece of software
	Slide 8: Unit 3: Think before you code: Planning your programming project
	Slide 9: Planning a piece of software: Do
	Slide 10: Planning a piece of software: Do
	Slide 11: Planning a piece of software: Don't
	Slide 12: Planning a piece of software: Don't
	Slide 13: Planning a piece of software: Styles
	Slide 14: Unit 3: Think before you code: Planning your programming project
	Slide 15: Planning a piece of software
	Slide 16: Live lesson
	Slide 17: Live lesson - Demonstrations

