
Scientific Software
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for
Scientific Computing, Heidelberg University

January 2024

Unit 5: Testing, testing, testing,…

▪ Why you need testing

▪ Types of tests and test-driven development

▪ Testing frameworks: Unittest

▪ Testing frameworks: Pytest

We will continue working on our Python modules.

2

Why testing?

You should always, always test your implementation against a known
result!!!!!!!!!!

This ensures

1. that you obtain "real" results.

2. that you find errors in your code that may not always strike.

Meaning that you obtain scientifically sound and reproducible results. As
a scientist/scholar, you need to adhere to Scientific Best Practices and
are responsible of and accountable for your work!!!

3

A bad example

Science 314, 2006

Home-made data analysis software had flipped a minus sign
leading to false analysis of the data

Result: Retraction of five papers (three were published in
Science)

The first of those five papers was cited 365 times.

Models and the software that
implement them define both
how science is done and what

science is done.

Joppa, McInerny, Harper, Salido et al., “Troubling

Trends in Scientific Software Use”, Science 340,

814 (2013)

The story is about Geoffry Chang from the Scripps Institute, he is a biologist and reported crystal structures of
proteins.
In addition to loss of own reputation, it also cost numerous other researchers a lot of time trying to reproduce
and build upon the false results. Others could not get funding or publish papers for topics that contradicted
Chang’s papers.

4

Unit 5: Testing, testing, testing,…

▪ Why you need testing

▪ Types of tests and test-driven development

▪ Testing frameworks: Unittest

▪ Testing frameworks: Pytest

We will continue working on our Python modules.

5

Types of tests

Unit testing
Focus on smallest unit of the program such as a
particular function; check that it returns correct
value/only accepts "reasonable" input

Integration testing
Verifies that unit-tested pieces work together and
produce correct output

System testing
Verifies that program runs in different
environments/with different compilers/language
versions

Performance testing/End-to-end tests/Regression testing ...

6

Test-driven development

Coding Testing Design

unit tests refactoring

Write a single unit of
the program

Write a unit test for
that unit

Refactor code to be
"simple enough"

Advantages:
• Improved code design
• Fewer errors in the code
• Initial development takes longer, but saves

time in the end phase before release/when
adding new features

Pitfalls:
• Too many tests/forget to run all tests/too

trivial or too large tests
• Poor maintenance of test suite

7

Which tests do I need?

• For now, we will use unit tests

• Tomorrow, we will automatize the testing

• There are two main unit test frameworks in python: unittest and
pytest

unittest

contains all the essential
functionality

pytest

contains all the essential
functionality AND more

compact style

8

Code coverage

• Quantifies how many lines of code/blocks/... are covered by tests –
for example, code coverage of 80% means that 20% of the code are
not covered by tests

• Good code coverage does not equal good tests!

9

Unit 5: Testing, testing, testing,…

▪ Why you need testing

▪ Types of tests and test-driven development

▪ Testing frameworks: Unittest

▪ Testing frameworks: Pytest

We will continue working on our Python modules.

10

Unittest

• We will start with a simple unit test example.

unittest
• Object-oriented
• TestCase base class
• test fixture: pre- and post-

processing of tests
• test suite: collection of tests

belonging together
• test runner: test execution

and output

unittest.TestCase
self.assertEqual('foo'.upper(), 'FOO')
self.assertTrue('FOO'.isupper())
self.assertFalse('Foo'.isupper())
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])

Run the test:
python –m unittest

11

Unittest
Method Checks that

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

https://docs.python.org/3/library/unittest.html
12

https://docs.python.org/3/library/unittest.html

Unittest
Function to be tested in file transform.py:

import numpy as np

def area_circ(r_in):
 """Calculates the area of a circle with given radius.

 :Input: The radius of the circle (float, >=0).
 :Returns: The area of the circle (float)."""
 if r_in < 0:

 raise ValueError("The radius must be >= 0.")
 area_out = np.pi * r_in**2
 print("The area of a circle with radius r = {:3.2f}cm \

 is A = {:4.2f}cm2.".format(r_in, area_out))
 return area_out

Test class in file test_transform.py:

import unittest
import numpy as np
import transform as tf

class test_area_circ(unittest.TestCase):
 def test_area_circ(self):

 """Test the area values against a reference for r >= 0."""
 self.assertEqual(tf.area_circ(1), np.pi)
 self.assertEqual(tf.area_circ(0), 0)
 self.assertEqual(tf.area_circ(2.1), np.pi*2.1**2)

 def test_values(self):
 """Make sure value errors are recognized for area_circ."""
 self.assertRaises(ValueError, tf.area_circ, -5)

13

Unit 5: Testing, testing, testing,…

▪ Why you need testing

▪ Types of tests and test-driven development

▪ Testing frameworks: Unittest

▪ Testing frameworks: Pytest

We will continue working on our Python modules.

14

Pytest

• Pytest has all the unittest methods with a shorter syntax (no TestCase
derived classes), plus additional modules.

import pytest
import numpy as np
import transform as tf

def test_area_circ():
 """Test the area values against a reference for r >= 0."""
 assert tf.area_circ(1) == np.pi, "should return pi"

 assert tf.area_circ(0) == 0
 assert tf.area_circ(2.1) == np.pi*2.1**2

def test_values():
 """Make sure value errors are recognized for area_circ."""
 with pytest.raises(ValueError):

 tf.area_circ(-5)

import unittest
import numpy as np
import transform as tf

class test_area_circ(unittest.TestCase):
 def test_area_circ(self):

 """Test the area values against a reference for r >= 0."""
 self.assertEqual(tf.area_circ(1), np.pi)
 self.assertEqual(tf.area_circ(0), 0)
 self.assertEqual(tf.area_circ(2.1), np.pi*2.1**2)

 def test_values(self):
 """Make sure value errors are recognized for area_circ."""
 self.assertRaises(ValueError, tf.area_circ, -5)

pytest unittest

15

Pytest: Structuring your unit tests

• A test can be divided into four sections:

Arrange
prepare the
environment for the
test

Act
change of the state of
system under test
(function/method
call)

Assert
check changed state
and compare to
expected behaviour

Cleanup
revert state to "clean
slate" so that the next
test can run

16

import pytest
import numpy as np
import transform as tf

def test_area_circ():
 """Test the area values against a reference for r >= 0."""
 assert tf.area_circ(1) == np.pi, "should return pi"

 assert tf.area_circ(0) == 0
 assert tf.area_circ(2.1) == np.pi*2.1**2

def test_values():
 """Make sure value errors are recognized for area_circ."""
 with pytest.raises(ValueError):

 tf.area_circ(-5)

Pytest: Structuring your unit tests

Arrange

ActAssert

Cleanup

17

Pytest: Using markers

• Markers can be used to categorize tests – for example here a marker named circles

@pytest.marker.circles

Register your markers in pytest.ini (this is enforced to prevent you from accidentally mistyping a marker):

Run pytest with only the selected tests:

python –m pytest –m circles

content of pytest.ini
[pytest]
markers =

 circles: mark a test only applying to circles
 your_other_markers: your description

18

Pytest: Using markers

• You may also skip tests by using

@pytest.marker.skip(reason="My reason to skip this test")

19

Pytest

• Explore pytest using the factorial implementation that you created
when trying out different programming paradigms; or another simple
function.

• Try what happens if your test fails. Try using markers.

20

Fixtures – an excursion to decorators

• Decorator: A function that extends another function without
modifying it

21

Pytest: Using fixtures

• Fixtures are used to Arrange the test
• not just setup/teardown (explicit names, modular)

• explicit declarations of dependencies

• provide a baseline so that each test is reliable and consistent

• Separate dependencies from implementation

• Especially important for integration tests

22

Pytest: Using fixtures
• Fixtures are invoked as

@pytest.fixture()

• Fixtures can inherit fixtures

• The scope of a fixture determines the order in which it is executed and how often it is executed:

- higher-scoped fixture will be executed first, fixtures of same order will be executed based on
dependencies
use autouse=True if all tests will use that fixture

@pytest.fixture()
def my_parent_fixture():
 …

@pytest.fixture()
def my_child_fixture(my_parent_fixture):
 …

@pytest.fixture(scope='module')

scope of the fixture
• function: the default scope, the fixture is destroyed at the end of the test
• class: the fixture is destroyed during teardown of the last test in the class
• module: the fixture is destroyed during teardown of the last test in the

module
• package: the fixture is destroyed during teardown of the last test in the

package
• session: the fixture is destroyed at the end of the test session

23

Pytest: Using fixtures

• You can pass data from a test into a fixture using markers and request

• (replace the example names given i n italics)

• You can have your fixture pass a generating function:

@pytest.fixture
def myfixture(request):
 marker = request.node.get_closest_marker("mymark")

@pytest.mark.mymark(myval)
def mytest(myfixture):
 …

@pytest.fixture
def myfixture():
 def _my_func(input):
 return 2 + input
 return _my_func

def mytest(myfixture):
 value = myfixture(40) 24

Pytest: Using parameterization

@pytest.mark.circles

@pytest.mark.parametrize('myval, result',

[

(1, np.pi),

(0, 0),

(2.1, np.pi*2.1**2)

])

def test_area_circ(myval, result):

"""Test the area values against a reference for r >= 0."""

assert tf.area_circ(myval) == result

25

Pytest: Using parametrizing fixtures
@pytest.fixture(params=[1,2], ids=["one", "two"])
def myfixture(request):
 return request.param

def test_myfixture(myfixture):
 print(myfixture)
 pass

https://docs.pytest.org/en/stable/contents.html

You can also define the params list
elsewhere (ie., top of the module)
and pass it to the fixture as a
variable.

26

https://docs.pytest.org/en/stable/contents.html

Pytest: Useful plugins

• pytest-randomly: enforces your tests to run in a random order
(uncover stateful dependencies)

• pytest-cov: coverage report of your tests

• pytest-sugar: nicer appearance and shows failed tests instantaneously

27

Unit 5: Testing, testing, testing,…

▪ Why you need testing

▪ Types of tests and test-driven development

▪ Testing frameworks: Unittest

▪ Testing frameworks: Pytest

We will continue working on our Python modules.

28

Live lesson

• Now we will write Pytest unit tests for the package that you and your
team developed so far.

29

Live lesson - Demonstrations

• The following demonstrations will take place during the live session:
oHow to use parametrization and fixtures in Pytest

30

	Slide 1
	Slide 2: Unit 5: Testing, testing, testing,…
	Slide 3: Why testing?
	Slide 4: A bad example
	Slide 5: Unit 5: Testing, testing, testing,…
	Slide 6: Types of tests
	Slide 7: Test-driven development
	Slide 8: Which tests do I need?
	Slide 9: Code coverage
	Slide 10: Unit 5: Testing, testing, testing,…
	Slide 11: Unittest
	Slide 12: Unittest
	Slide 13: Unittest
	Slide 14: Unit 5: Testing, testing, testing,…
	Slide 15: Pytest
	Slide 16: Pytest: Structuring your unit tests
	Slide 17: Pytest: Structuring your unit tests
	Slide 18: Pytest: Using markers
	Slide 19: Pytest: Using markers
	Slide 20: Pytest
	Slide 21: Fixtures – an excursion to decorators
	Slide 22: Pytest: Using fixtures
	Slide 23: Pytest: Using fixtures
	Slide 24: Pytest: Using fixtures
	Slide 25: Pytest: Using parameterization
	Slide 26: Pytest: Using parametrizing fixtures
	Slide 27: Pytest: Useful plugins
	Slide 28: Unit 5: Testing, testing, testing,…
	Slide 29: Live lesson
	Slide 30: Live lesson - Demonstrations

