Scientific Software
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for
Scientific Computing, Heidelberg University

January 2024

Unit 6: Continuous integration - GitHub actions

" GitHub actions basics
" Run your tests and linter automatically through GitHub actions

" How to publish your research and your software
= Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

What are GitHub actions?

GitHub actions are a way to automatize syntax checking and testing upon certain events ("whenever
something changes"), i.e. pull requests, merging of branches, etc.

This provides a convenient tool to check your code before it is "unleashed" for a more general use.

You only need to set this up once and it will save you time in the long run.

GitHub actions

' Runner
jo5 4 ' action A '

Event workflow file

pull request

push action B

workflows/main.yml

Runner
' action C '

GitHub actions

GitHub action pricing:
Free for public repositories
For private repositories: ~2000 min/month (execution
minutes for hosted runners)
1 min actually is 60s on Ubuntu, but: 60s & 2 min on
Windows; 60s £ 10 min on MacOS

‘ (0} Resources Price per extra minute

Linux 2 cores,7GB $0.008
Windows 2 cores,7GB S0.016

MacOS 2cores,7GB $0.08

This is a basic workflow to help you get started with Actions

The workflow file —

Controls when the action will run.
on:

ilei i H # Triggers the workflow on push or pull request events but only for the main branch
* The workflow file is written in YAML push'gg P p q y

(WhICh stands for "YAML Ain't Markup branches: [main]
Language") and is a data serialization pull_request: _
branches: [main]

language; indentation similarto

python # Allows you to run this workflow manually from the Actions tab

A workflow run is made up of one or more jobs that canm run sequentially or in parallel
jobs:
test_and_doc:

The type of runner that the job will rum on
runs-on: {{ matrix.os }}
strategy:

matrix:

05! [ubuntu-18.84, macos-10.15, windows-2819]
python-version: [3.7, 3.8]
steps:
- name: Set up Python ${{ matrix.python-versiom }}
uses: actions/setup-python@vz2
with:
python-version: §{{ matrix.python-version }}

- name: Getting repository
uses: actionsScheckout@v?
6

This is a basic workflow to help you get started with Actions

Workflow syntax

gatrols when the action will run.

: T wiggeringevent
dictio ary pull_requeft:

branches

[main]

Allows Jou to run this workflow manually from the Actions tab

.. workflowy/ dispatch:
- listitem 1

- listitem 2 # A workflow run is made up of one or more jobs that cam run sequentially or in parallel
jobs:
test_and_doc:

| q r | . # The type of runner that the job will run on
1 e ti-linevalue: | runs-on: ${{ matrix.os }}

instruction 1 strategy:

instruction 2 mArrLe

05! [ubuntu-18.84, macos-10.15, windows-2819]
- understandsJSON syntax

list or collection:

Qethon-version: [3.7, 3.8]

pythop-version: §{{ matrix.python-version }}

fetting repository
uses:factions/Scheckout@v?
7

list

Workflow syntax

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

* file needs.yml or .yaml extension

* hasto be stored in .github/workflows

the name of your the action that
workflow triggers the workflow

the jobs that constitute
the workflow

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

This is a basic workflow to help you get started with Actions

name: CI

Workflow syntax

Controls when the action will rum.

on:
Triggers the workflow on push or pull request events but only for the main branch
on: [push, pull request] push:
branches: [main]
job: pull_request:
job_id: branches: [main]

name: my Jjob name

needs: jobl # this ensures jobl is run first
runs-on: myOS # the architecture that should be used
steps:

Allows you to run this workflow manually from the Actions tab
workflow_dispatch:

A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:

test_and_doc:
Virtual environment YAML workflow label # The type of runner that the job will run on

runs-on: E{{ matrix.os }}

Windows Server 2019 windows-latest or windows-2019 strategy:
matrix:
Ubuntu 20.04 ubuntu-latest or ubuntu-20.04 os: [ubuntu-18.84, macos-10.15, windows-2019]
python-version: [3.7, 3.8]
Ubuntu 18.04 ubuntu-latest or ubuntu-18.04 steps:
- name: Set up Python ${{ matrix.python-version }}
Ubuntu 16.04 ubuntu-16.04 uses: actions/setup-python@vz
with:
macOS Big Sur11.0 macos-11.0 python-version: E{{ matrix.python-wversion }}
- name: Getting repository
macOS Catalina 10.15 macos-latest or macos-10.15 uses: actlons/checkoutgvz

This is a basic workflow to help you get started with Actions

Workf| t o
O r OW Syn aX # Controls when the action will rum.
on:
Triggers the workflow on push or pull request events but only for the main branch
push:
branches: [main]
pull_request:

_ branches: [main]

creates a build matrix
for the JOb torunin workflow_dispatch:

Allows you to run this workflow manually from the Actions tab

A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
test_and_doc:
The type of runner that the job will run on
runs-on: B{{ matrix.os }}
strategy:
matrix:
o05: [ubuntu-18.84, macos-10.15, windows-2819]
python-version: [3.7, 3.8]
steps:
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@vz
with:
python-version: §{{ matrix.python-version }}
- name: Getting repository

uses: actionss/checkoutiv?2
10

Workflow syntax: The actions

* The actionsare individual tasksthat can be written in different languages

job: * Write yourown or use availableones

job_id:
name: my Jjob name
needs: jobl # this ensures jobl is run first
runs-on: myOS # the architecture that should be used
steps:
- name: checkout the repo

uses: specify an action « specify version number of the referenced action
otherwise updates to the action may break your workflow

_ . actions are either JavaScript files or Docker containers
https://github.com/actions

httos://eithub.com/marketolace?tvoe=actions [OF Docker containers, job must be run in linux environment
https://hub.docker.com/

relevant actions: {owner}/{repo}/{path}@{ref}ordocker://{image}:{tag}
actions/checkout@v2 # checksout your repository on the runner —you will always need this if you run tests/linter
actions/setup-python@v2 # sets up python environment

sonarsource/sonarcloud-github-action@master # code quality analysis through sonarcloud

11

https://github.com/actions
https://github.com/marketplace?type=actions
https://hub.docker.com/

Workflow syntax: run

job:
job_id:
name: my Jjob name
needs: jobl # this ensures jobl is run first
runs-on: myOS # the architecture that should be used

steps:
- name: build the documentation
run: | # run a script, execute a command-line command
cd doc
build html
- name: run the linter
run: flake8

Example running a script using bash

steps:
- name: Display the path
run: echo $PATH
shell: bash

Example running a script using Windows cmd

steps:
- name: Display the path
run: echo %PATH%
shell: cmd

Example running a script using PowerShell Core

steps:
- name: Display the path
run: echo ${env:PATH}
shell: pwsh

Example: Using PowerShell Desktop to run a script

steps:
- name: Display the path
run: echo ${env:PATH}
shell: powershell

Example running a python script

steps:
- name: Display the path
run: |
import os

print(os.environ["PATH'])
shell: python

12

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

Unit 6: Continuous integration - GitHub actions

" Run your tests and linter automatically through GitHub actions
" How to publish your research and your software
= Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

Linter in GitHub actions

* Create a workflow file in .github/workflows/main.yml
* Run the linter through the workflow
- name: Run linter

run: flake8

Take care of proper indentation! Yaml syntax is very strict.

Linter in GitHub actions

* Trigger the workflow and see what happens.

Unit tests in GitHub actions

* Add the following lines to your GitHub actions file:

- hame: Run tests
run: |
cd src/package
python -m pytest

» Take care of proper indentation!

Unit tests in GitHub actions

* Trigger the workflow and see what happens.

Linter and tests in GitHub actions

* Meddle with your code so that the linter/unit tests will fail. Commit
to a branch and open a Pull Request. What happens?

Unit 6: Continuous integration - GitHub actions

" How to publish your research and your software
= Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

How to publish research and software

Scenario 1:

You publish your research but not the data nor
the software.

Data availability statement:

".. datais available from the authorsupon
reasonablerequest..."

Please consider to publish a
preprinton a preprint server
like arxiv (after submission of
your paper to a journal but
before its publication)

20

How to publish research and software

Scenario 1;

You publish your research but not the data nor
the software.

Data availability statement:

".. datais available from the authorsupon
reasonablerequest..."

Please consider to publish a
preprinton a preprint server
like arxiv (after submission of
your paper to a journal but

before its publication)

Scenario 2:
You publish your research and data but not the
software.

Data availability statement:
"..datais availableat DOI..."

* publish preprint

* publishdataon a platform
like zenodo, and obtaina

DOI

21

How to publish research and software

Scenario 3:
You publish your research, data and software.

Data availability statement:
"..data and software is availableat DOI ..."

* publish preprint

* publishdata with DOI

* publishsoftware with DOI
(ie zenodo)

22

How to publish research and software

Scenario 4:
Scenario 3: You publish your research and data separate
You publish your research, data and software. from the software, both in a journal/datain a

database.
Data availability statement:

"..datais availableat DOI..."
Software is referenced via its publication.

Data availability statement:
"..data and software is availableat DOI ..."

* publish preprint

* publish data with DOI

* publishsoftware in
dedicated, peer-review

* publish preprint

* publishdata with DOI

* publishsoftware with DOI
(ie zenodo)

journal*®

*List of possible journals: https://www.software.ac.uk/which-journals-should-i-publish-my-software 23

Unit 6: Continuous integration - GitHub actions

= GitHub actions basics
= Run your tests and linter automatically through GitHub actions

= How to publish your research and your software
= Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

24

Publish a Python package on PyPi

* Work through:
* https://packaging.python.org/tutorials/packaging-projects/

25

https://packaging.python.org/tutorials/packaging-projects/

Publish a Python package

* You need afile __init__.py in your package source directory so that
the directory can be imported as a package

e Unit tests are in tests/

* Create the file pyproject.toml - this file communicates with build tools
like pip and build

[build-system]

requires = [
"setuptools>=42",
"wheel™

]

build-backend =
"setuptools.build meta"

26

Configure the metadata

 Static metadata setup.cfg: Always the same. Try to keep it static
rather than dynamic.

 Dynamic metadata setup.py: Determined at install-time. Only use
when absolutely necessary.

Live lesson

* In the live lesson, we will set up GitHub actions for your Python
package.

	Slide 1
	Slide 2: Unit 6: Continuous integration - GitHub actions
	Slide 3: What are GitHub actions?
	Slide 4: GitHub actions
	Slide 5: GitHub actions
	Slide 6: The workflow file
	Slide 7: Workflow syntax
	Slide 8: Workflow syntax
	Slide 9: Workflow syntax
	Slide 10: Workflow syntax
	Slide 11: Workflow syntax: The actions
	Slide 12: Workflow syntax: run
	Slide 13: Unit 6: Continuous integration - GitHub actions
	Slide 14: Linter in GitHub actions
	Slide 15: Linter in GitHub actions
	Slide 16: Unit tests in GitHub actions
	Slide 17: Unit tests in GitHub actions
	Slide 18: Linter and tests in GitHub actions
	Slide 19: Unit 6: Continuous integration - GitHub actions
	Slide 20: How to publish research and software
	Slide 21: How to publish research and software
	Slide 22: How to publish research and software
	Slide 23: How to publish research and software
	Slide 24: Unit 6: Continuous integration - GitHub actions
	Slide 25: Publish a Python package on PyPi
	Slide 26: Publish a Python package
	Slide 27: Configure the metadata
	Slide 28: Live lesson

