
Scientific Software
Development

Inga Ulusoy, Scientific Software Center, Interdisciplinary Center for
Scientific Computing, Heidelberg University

January 2024

Unit 6: Continuous integration - GitHub actions

▪ GitHub actions basics

▪ Run your tests and linter automatically through GitHub actions

▪ How to publish your research and your software

▪ Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

2

GitHub actions are a way to automatize syntax checking and testing upon certain events ("whenever
something changes"), i.e. pull requests, merging of branches, etc.

This provides a convenient tool to check your code before it is "unleashed" for a more general use.

You only need to set this up once and it will save you time in the long run.

What are GitHub actions?

3

Runner

Runner

steps

steps

steps

GitHub actions

action A

action B

action C

workflow file

.workflows/main.yml

Event
• pull request
• push
• …

job 1

job 2

4

GitHub actions

GitHub action pricing:
• Free for public repositories
• For private repositories: ~2000 min/month (execution

minutes for hosted runners)
• 1 min actually is 60s on Ubuntu, but: 60s ≙ 2 min on

Windows; 60s ≙ 10 min on MacOS

OS Resources Price per extra minute

Linux 2 cores, 7 GB $ 0.008

Windows 2 cores, 7 GB $0.016

MacOS 2 cores, 7 GB $ 0.08

5

The workflow file
• The workflow file is written in YAML

(which stands for "YAML Ain't Markup
Language") and is a data serialization
language; indentation similar to
python

name of your workflow

triggering event

trigger manually

runners

check out
repository action 6

Workflow syntax name of your workflow

triggering event

trigger manually

runners

check out
repository action

key: value

- understands JSON syntax

list or collection:
 - list item 1
 - list item 2

my multi-line value: |
 instruction 1
 instruction 2

list

dictionary

list

7

Workflow syntax

• file needs .yml or .yaml extension

• has to be stored in .github/workflows

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

on:
the action that
triggers the workflow

name:
the name of your
workflow

jobs:
the jobs that constitute
the workflow

8

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

Workflow syntax

on: [push, pull_request]

job:
 job_id:
 name: my job name
 needs: job1 # this ensures job1 is run first
 runs-on: myOS # the architecture that should be used
 steps:
 ...

Virtual environment YAML workflow label

Windows Server 2019 windows-latest or windows-2019

Ubuntu 20.04 ubuntu-latest or ubuntu-20.04

Ubuntu 18.04 ubuntu-latest or ubuntu-18.04

Ubuntu 16.04 ubuntu-16.04

macOS Big Sur 11.0 macos-11.0

macOS Catalina 10.15 macos-latest or macos-10.15 9

Workflow syntax

strategy:
creates a build matrix
for the job to run in

10

Workflow syntax: The actions

job:
 job_id:
 name: my job name
 needs: job1 # this ensures job1 is run first
 runs-on: myOS # the architecture that should be used
 steps:
 - name: checkout the repo
 uses: specify an action

specify version number of the referenced action
otherwise updates to the action may break your workflow

actions are either JavaScript files or Docker containers
for Docker containers, job must be run in linux environment

relevant actions: {owner}/{repo}/{path}@{ref} or docker://{image}:{tag}
actions/checkout@v2 # checks out your repository on the runner – you will always need this if you run tests/linter
actions/setup-python@v2 # sets up python environment

sonarsource/sonarcloud-github-action@master # code quality analysis through sonarcloud

https://github.com/actions
https://github.com/marketplace?type=actions
https://hub.docker.com/

• The actions are individual tasks that can be written in different languages
• Write your own or use available ones

11

https://github.com/actions
https://github.com/marketplace?type=actions
https://hub.docker.com/

Workflow syntax: run

job:
 job_id:
 name: my job name
 needs: job1 # this ensures job1 is run first
 runs-on: myOS # the architecture that should be used
 steps:
 - name: build the documentation
 run: | # run a script, execute a command-line command
 cd doc
 build html
 - name: run the linter
 run: flake8

Example running a script using bash
steps:
 - name: Display the path

 run: echo $PATH
 shell: bash

Example running a script using Windows cmd
steps:

 - name: Display the path
 run: echo %PATH%
 shell: cmd

Example running a script using PowerShell Core

steps:
 - name: Display the path
 run: echo ${env:PATH}
 shell: pwsh

Example: Using PowerShell Desktop to run a script
steps:
 - name: Display the path
 run: echo ${env:PATH}
 shell: powershell

Example running a python script
steps:
 - name: Display the path
 run: |
 import os
 print(os.environ['PATH'])
 shell: python

12

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions

Unit 6: Continuous integration - GitHub actions

▪ GitHub actions basics

▪ Run your tests and linter automatically through GitHub actions

▪ How to publish your research and your software

▪ Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

13

Linter in GitHub actions

• Create a workflow file in .github/workflows/main.yml

• Run the linter through the workflow

- name: Run linter

run: flake8

Take care of proper indentation! Yaml syntax is very strict.

14

Linter in GitHub actions

• Trigger the workflow and see what happens.

15

Unit tests in GitHub actions

• Add the following lines to your GitHub actions file:

- name: Run tests

run: |

cd src/package

python -m pytest

• Take care of proper indentation!

16

Unit tests in GitHub actions

• Trigger the workflow and see what happens.

17

Linter and tests in GitHub actions

• Meddle with your code so that the linter/unit tests will fail. Commit
to a branch and open a Pull Request. What happens?

18

Unit 6: Continuous integration - GitHub actions

▪ GitHub actions basics

▪ Run your tests and linter automatically through GitHub actions

▪ How to publish your research and your software

▪ Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

19

How to publish research and software

20

Scenario 1:
You publish your research but not the data nor
the software.

Data availability statement:
".. data is available from the authors upon
reasonable request..."

Please consider to publish a
preprint on a preprint server
like arxiv (after submission of
your paper to a journal but

before its publication)

How to publish research and software

21

Scenario 1:
You publish your research but not the data nor
the software.

Data availability statement:
".. data is available from the authors upon
reasonable request..."

Please consider to publish a
preprint on a preprint server
like arxiv (after submission of
your paper to a journal but

before its publication)

Scenario 2:
You publish your research and data but not the
software.

Data availability statement:
".. data is available at DOI..."

• publish preprint
• publish data on a platform

like zenodo, and obtain a
DOI

How to publish research and software

22

Scenario 3:
You publish your research, data and software.

Data availability statement:
".. data and software is available at DOI ..."

• publish preprint
• publish data with DOI

• publish software with DOI
(ie zenodo)

How to publish research and software

23

Scenario 3:
You publish your research, data and software.

Data availability statement:
".. data and software is available at DOI ..."

• publish preprint
• publish data with DOI

• publish software with DOI
(ie zenodo)

Scenario 4:
You publish your research and data separate
from the software, both in a journal/data in a
database.

Data availability statement:
".. data is available at DOI..."
Software is referenced via its publication.

• publish preprint
• publish data with DOI
• publish software in

dedicated, peer-review
journal*

*List of possible journals: https://www.software.ac.uk/which-journals-should-i-publish-my-software

Unit 6: Continuous integration - GitHub actions

▪ GitHub actions basics

▪ Run your tests and linter automatically through GitHub actions

▪ How to publish your research and your software

▪ Optionally: Publish your Python package

The Python package will be completed.
Optional: Publish your package on PyPi.

24

Publish a Python package on PyPi

• Work through:

• https://packaging.python.org/tutorials/packaging-projects/

25

https://packaging.python.org/tutorials/packaging-projects/

Publish a Python package

• You need a file __init__.py in your package source directory so that
the directory can be imported as a package

• Unit tests are in tests/

• Create the file pyproject.toml - this file communicates with build tools
like pip and build

[build-system]
requires = [

 "setuptools>=42",
 "wheel"

]
build-backend =
"setuptools.build_meta"

list of packages needed to
build your package

26

Configure the metadata

• Static metadata setup.cfg: Always the same. Try to keep it static
rather than dynamic.

• Dynamic metadata setup.py: Determined at install-time. Only use
when absolutely necessary.

27

Live lesson

• In the live lesson, we will set up GitHub actions for your Python
package.

28

	Slide 1
	Slide 2: Unit 6: Continuous integration - GitHub actions
	Slide 3: What are GitHub actions?
	Slide 4: GitHub actions
	Slide 5: GitHub actions
	Slide 6: The workflow file
	Slide 7: Workflow syntax
	Slide 8: Workflow syntax
	Slide 9: Workflow syntax
	Slide 10: Workflow syntax
	Slide 11: Workflow syntax: The actions
	Slide 12: Workflow syntax: run
	Slide 13: Unit 6: Continuous integration - GitHub actions
	Slide 14: Linter in GitHub actions
	Slide 15: Linter in GitHub actions
	Slide 16: Unit tests in GitHub actions
	Slide 17: Unit tests in GitHub actions
	Slide 18: Linter and tests in GitHub actions
	Slide 19: Unit 6: Continuous integration - GitHub actions
	Slide 20: How to publish research and software
	Slide 21: How to publish research and software
	Slide 22: How to publish research and software
	Slide 23: How to publish research and software
	Slide 24: Unit 6: Continuous integration - GitHub actions
	Slide 25: Publish a Python package on PyPi
	Slide 26: Publish a Python package
	Slide 27: Configure the metadata
	Slide 28: Live lesson

